🔥码云GVP开源项目 12k star Uniapp+ElementUI 功能强大 支持多语言、二开方便! 广告
## 简单使用 * 启动hive,在hive安装目录中bin文件夹直接执行hive命令。 ``` bin/hive ``` * 之后,配置的数据库中会生成一个库。 ![](https://img.kancloud.cn/5d/b5/5db5d1e1a7a3834aa3da661bb0f16176_139x45.png) * 新建一个hive的数据库 ``` hive> create database test_hive; ``` * 新建一个表,这个表是可以直接用文件导入的。见下文。 ``` create table players(id int,name string) ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t' ``` * 在hive的data文件夹新建一个文件players。 ``` 1 james 2 zion 3 davis 4 george ``` * 然后将文件导入players表中。 ``` load data local inpath '/home/bizzbee/work/app/hive-1.1.0-cdh5.15.1/data/players' overwrite into table players; ``` * 如果执行统计的话,会自动生成MapReduce作业。 ``` hive> select count(1) from players; Query ID = bizzbee_20191105232020_fa9a96e2-3a68-4671-a4a5-df1e88145c50 Total jobs = 1 Launching Job 1 out of 1 Number of reduce tasks determined at compile time: 1 In order to change the average load for a reducer (in bytes): set hive.exec.reducers.bytes.per.reducer=<number> In order to limit the maximum number of reducers: set hive.exec.reducers.max=<number> In order to set a constant number of reducers: set mapreduce.job.reduces=<number> Starting Job = job_1572942693118_0001, Tracking URL = http://bizzbee:8088/proxy/application_1572942693118_0001/ Kill Command = /home/bizzbee/work/app/hadoop-2.6.0-cdh5.15.1/bin/hadoop job -kill job_1572942693118_0001 Hadoop job information for Stage-1: number of mappers: 1; number of reducers: 1 2019-11-05 23:21:13,111 Stage-1 map = 0%, reduce = 0% 2019-11-05 23:21:25,470 Stage-1 map = 100%, reduce = 0%, Cumulative CPU 5.96 sec 2019-11-05 23:21:35,551 Stage-1 map = 100%, reduce = 100%, Cumulative CPU 11.61 sec MapReduce Total cumulative CPU time: 11 seconds 610 msec Ended Job = job_1572942693118_0001 MapReduce Jobs Launched: Stage-Stage-1: Map: 1 Reduce: 1 Cumulative CPU: 11.61 sec HDFS Read: 7283 HDFS Write: 2 SUCCESS Total MapReduce CPU Time Spent: 11 seconds 610 msec OK 4 Time taken: 50.814 seconds, Fetched: 1 row(s) ```