沃尔什-哈达玛变换(Walsh-Hadmard Transform,WHT),是一种典型的非正弦函数变换,采用正交直角函数作为基函数,具有与傅里叶函数类似的性质,图像数据越是均匀分布,经过沃尔什-哈达玛变换后的数据越是集中于矩阵的边角上,因此沃尔什变换具有能量集中的性质,可以用于压缩图像信息。
Matlab中的Hadamard函数:
格式:H=hadamard( n ) ,返回一个 n * n的hadamard矩阵。
![](https://box.kancloud.cn/2016-04-07_57061791be1a2.jpg)
![](https://box.kancloud.cn/2016-04-07_57061791d2ed3.jpg)
![](https://box.kancloud.cn/2016-04-07_57061791e7388.jpg)
![](https://box.kancloud.cn/2016-04-07_57061792074e2.jpg)
![](https://box.kancloud.cn/2016-04-07_570617921c5b7.jpg)
![](https://box.kancloud.cn/2016-04-07_570617922df2c.jpg)
![](https://box.kancloud.cn/2016-04-07_5706179241612.jpg)
下面对lena图像进行沃尔什-哈达玛变换与逆变换的Matlab实现:
~~~
clc;
clear all;
im_l=imread('C:\Users\DELL\Desktop\lena.jpg');
im_l1=im2double(im_l);
im_l2=rgb2gray(im_l1);
%对图像进行哈达玛变换
H=hadamard(512);%产生512X512的Hadamard矩阵
haImg=H*im_l2*H;
haImg2=haImg/512;
%对图像进行哈达玛逆变换
hhaImg=H'*haImg2*H';
hhaImg2=hhaImg/512;
haImg1=im2uint8(haImg);
hhaImg1=im2uint8(hhaImg2);
subplot(2,2,1);
imshow(im_l);
title('原图');
subplot(2,2,2);
imshow(im_l2);
title('灰度图');
subplot(2,2,3);
imshow(haImg2);
title('图像的二维离散Hadamard变换');
subplot(2,2,4);
imshow(hhaImg1);
title('图像的二维离散Hadamard逆变换');
~~~
![](https://box.kancloud.cn/2016-04-07_5706179256f45.jpg)