原文链接:[迟到一年HashMap解读](http://dandanlove.com/2017/10/27/late-one-year-hashmap/)
备份存档:
---
# 前言
HashMap和List这两个类是我们在Java语言编程时使用的频率非常高集合类。“知其然,更要知其所以然”。HashMap认识我已经好多年了,对我在工作中一直也尽心尽力的提供帮助。我从去年开始就想去它家拜访来着,可是经常因为各种各样的原因让其遗忘在路过的风景中。(文章大部分源码基于jdk1.7)。
[![Map&Set](http://upload-images.jianshu.io/upload_images/1319879-f243ffd6da9f703c.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240 "Map&Set")](http://upload-images.jianshu.io/upload_images/1319879-f243ffd6da9f703c.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240 "Map&Set")
# [](http://dandanlove.com/2017/10/27/late-one-year-hashmap/#HashMap%E6%A6%82%E8%BF%B0%EF%BC%9A "HashMap概述:")HashMap概述:
HashMap是基于哈希表实现的键值对的集合,继承自AbstractMap并的Map接口的非同步实现。此实现提供所有可选的映射操作,并允许使用null值和null键。此类不保证映射的顺序,特别是它不保证该顺序恒久不变。
HashMap的特殊存储结构使得在获取指定元素的前需要经过哈希运算,得到目标元素在哈希表中的位置,然后再进行少量的比较即可得到元素,这使得HashMap的查找效率很高。
# [](http://dandanlove.com/2017/10/27/late-one-year-hashmap/#HashMap%E7%9A%84%E7%89%B9%E7%82%B9 "HashMap的特点")HashMap的特点
* 底层实现JDK1.8之前是数组加链表,之后是数组加红黑树。
* key是用Set进行存储的,所以不允许重复(可以允许null作为key)。
* 元素的存储是无序的,每次重新扩容元素位置可能改变。
* 插入、获取的时间复杂度基本是O(1)(提前试有适当的哈希函数,让元素均匀分布分布)。
* 两个关键因子:出事容量,加载因子。
# [](http://dandanlove.com/2017/10/27/late-one-year-hashmap/#HashMap%E7%9A%84%E6%95%B0%E6%8D%AE%E7%BB%93%E6%9E%84 "HashMap的数据结构")HashMap的数据结构
~~~
public class HashMapK,V>extends AbstractMapK,V>
implements MapK,V>, Cloneable, Serializable
{
static final int DEFAULT_INITIAL_CAPACITY = 1 4; // aka 16
static final int MAXIMUM_CAPACITY = 1 30;
static final float DEFAULT_LOAD_FACTOR = 0.75f;
static final Entry[] EMPTY_TABLE = {};
transient Entry[] table = (Entry[]) EMPTY_TABLE;
transient int size;
int threshold;
final float loadFactor;
transient int modCount;
static final int ALTERNATIVE_HASHING_THRESHOLD_DEFAULT = Integer.MAX_VALUE;
/**********部分代码省略**********/
static class EntryK,V> implements Map.EntryK,V> {
final K key;
V value;
Entry next;
int hash;
/**********部分代码省略**********/
}
/**********部分代码省略**********/
}
~~~
HashMap中主要存储着一个Entry的数组table,Entry就是数组中的元素,Entry实现了Map.Entry所以其实Entry就是一个key-value对,并且它持有一个指向下一个元素的引用,这样构成了链表(在java8中Entry改名为Node,因为在Java8中Entry不仅有链表形式还有树型结构,对应的类为TreeNode)。
[![HashMap的数据结构](http://upload-images.jianshu.io/upload_images/1319879-7966cdd20c44eff4.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240 "HashMap的数据结构")](http://upload-images.jianshu.io/upload_images/1319879-7966cdd20c44eff4.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240 "HashMap的数据结构")
# [](http://dandanlove.com/2017/10/27/late-one-year-hashmap/#HashMap%E7%9A%84%E6%9E%84%E9%80%A0 "HashMap的构造")HashMap的构造
~~~
/**
* Constructs an empty HashMap with the specified initial
* capacity and load factor.
*
* @param initialCapacity the initial capacity
* @param loadFactor the load factor
* @throws IllegalArgumentException if the initial capacity is negative
* or the load factor is nonpositive
*/
public HashMap(int initialCapacity, float loadFactor) {
if (initialCapacity 0)
throw new IllegalArgumentException("Illegal initial capacity: " +
initialCapacity);
if (initialCapacity > MAXIMUM_CAPACITY)
initialCapacity = MAXIMUM_CAPACITY;
if (loadFactor 0 || Float.isNaN(loadFactor))
throw new IllegalArgumentException("Illegal load factor: " +
loadFactor);
this.loadFactor = loadFactor;
threshold = initialCapacity;
init();
}
public HashMap(int initialCapacity) {
this(initialCapacity, DEFAULT_LOAD_FACTOR);
}
public HashMap() {
this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR);
}
public HashMap(Map m) {
this(Math.max((int) (m.size() / DEFAULT_LOAD_FACTOR) + 1,
DEFAULT_INITIAL_CAPACITY), DEFAULT_LOAD_FACTOR);
inflateTable(threshold);
putAllForCreate(m);
}
~~~
主要有两个参数,【initialCapacity】初始容量、【loadFactor】加载因子。这两个属性在类定义时候都赋有默认值分别为16和0.75。table数组默认值为EMPTY_TABLE,在添加元素的时候判断table是否为EMPTY_TABLE来调用【inflateTable】。在构造HashMap实例的时候默认【threshold】阈值等于初始容量。当构造方法的参数为Map时,调用 【inflateTable(threshold)】方法对table数组容量进行设置:
~~~
/**
* Inflates the table.
*/
private void inflateTable(int toSize) {
// Find a power of 2 >= toSize
int capacity = roundUpToPowerOf2(toSize);
//更新阈值
threshold = (int) Math.min(capacity * loadFactor, MAXIMUM_CAPACITY + 1);
table = new Entry[capacity];
initHashSeedAsNeeded(capacity);
}
~~~
//返回一个比初始容量大的最小的2的幂数,如果number为2的整数幂值那么直接返回,最小为1,最大为2^31。
~~~
private static int roundUpToPowerOf2(int number) {
// assert number >= 0 : "number must be non-negative";
return number >= MAXIMUM_CAPACITY
? MAXIMUM_CAPACITY
: (number > 1) ? Integer.highestOneBit((number - 1) 1) : 1;
}
~~~
## [](http://dandanlove.com/2017/10/27/late-one-year-hashmap/#highestOneBit "highestOneBit")highestOneBit
返回一个不大于i的2的整数次幂
~~~
public static int highestOneBit(int i) {
// HD, Figure 3-1
i |= (i >> 1);//i的二进制右边2位为1 。
i |= (i >> 2);//i的二进制右边4位为1。
i |= (i >> 4);//i的二进制右边8位为1。
i |= (i >> 8);//i的二进制右边16位为1。
i |= (i >> 16);//i的二进制右边32位为1。
//这样5次移位后再进行与操作,i的所有非0低位全部变成1;
return i - (i >>> 1);//i减去所有底位的1,只留一个高为的1
}
~~~
为什么桶的容量要是2的指数,后面会讲到这样有助于添加元素时减少哈希冲突。
# HashMap的存取实现
## HashMap的put方法
> * 获取key的hashcode
> * 二次hash
> * 通过hash找到对应的index
> * 插入链表
~~~
//HashMap添加元素
public V put(K key, V value) {
//table没有初始化size=0,先调用inflateTable对table容器进行扩容
if (table == EMPTY_TABLE) {
inflateTable(threshold);
}
//在hashMap增加key=null的键值对
if (key == null)
return putForNullKey(value);
//计算key的哈希值
int hash = hash(key);
//计算在table数据中的bucketIndex
int i = indexFor(hash, table.length);
//遍历table[i]的链表,如果节点不为null,通过循环遍历链表的下一个元素
for (Entry e = table[i]; e != null; e = e.next) {
Object k;
//找到对应的key,则将value进行替换
if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {
V oldValue = e.value;
e.value = value;
e.recordAccess(this);
return oldValue;
}
}
//没有找到对应的key的Entry,则需要对数据进行modify,modCount加一
modCount++;
//将改key,value添加入table中
addEntry(hash, key, value, i);
return null;
}
//添加Entry
void addEntry(int hash, K key, V value, int bucketIndex) {
//当前桶的长度大于于阈值,而且当前桶的索引位置不为null。则需要对桶进行扩容
if ((size >= threshold) && (null != table[bucketIndex])) {
//对桶进行扩容
resize(2 * table.length);
//重新计算hash值
hash = (null != key) ? hash(key) : 0;
//重新计算当前需要插入的桶的位置
bucketIndex = indexFor(hash, table.length);
}
//在bucketIndex位置创建Entry
createEntry(hash, key, value, bucketIndex);
}
//创建Entry
void createEntry(int hash, K key, V value, int bucketIndex) {
//找到当前桶的当前链表的头节点
Entry e = table[bucketIndex];
//新创建一个Entry将其插入在桶的bucketIndex位置的链表的头部
table[bucketIndex] = new Entry
size++;
}
~~~
## 获取key的hashcode并进行二次hash
~~~
final int hash(Object k) {
int h = hashSeed;
if (0 != h && k instanceof String) {
return sun.misc.Hashing.stringHash32((String) k);
}
h ^= k.hashCode();
// This function ensures that hashCodes that differ only by
// constant multiples at each bit position have a bounded
// number of collisions (approximately 8 at default load factor).
h ^= (h >>> 20) ^ (h >>> 12);
return h ^ (h >>> 7) ^ (h >>> 4);
}
~~~
为什么这么进行二次hash,目的是唯一的就是让产生的hashcode散列均匀。在网络上也找了一些关于hash值获取的介绍,下边是我找到感觉比较靠谱的一篇文章中关于hash算法的解析:
假设h^key.hashCode()的值为:0x7FFFFFFF,table.length为默认值16。
上面算法执行
[![image.png](http://upload-images.jianshu.io/upload_images/1319879-e14ca1e958bf33cf.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1000 "image.png")](http://upload-images.jianshu.io/upload_images/1319879-e14ca1e958bf33cf.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1000 "image.png")
得到i=15
其中h\^(h>>>7)^(h>>>4) 结果中的位运行标识是把h>>>7 换成 h>>>8来看。
即最后h\^(h>>>8)^(h>>>4) 运算后hashCode值每位数值如下:
~~~
> 8=8
> 7=7^8
> 6=6^7^8
> 5=5^8^7^6
> 4=4^7^6^5^8
> 3=3^8^6^5^8^4^7 ————> 3^4^5^6^7
> 2=2^7^5^4^7^3^8^6 ———> 2^3^4^5^6^8
> 1=1^6^4^3^8^6^2^7^5 ——> 1^2^3^4^5^7^8
> 算法中是采用(h>>>7)而不是(h>>>8)的算法,应该是考虑1、2、3三位出现重复位^运算的情况。使得最低位上原hashCode的8位都参与了\^运算,所以在table.length为默认值16的情况下面,hashCode任意位的变化基本都能反应到最终hash table 定位算法中,这种情况下只有原hashCode第3位高1位变化不会反应到结果中,即:0x7FFFF7FF的i=15。
~~~
从整个二次hash的解析过程来看,通过多次位移和多次与操作获取的hashc。每当key的hashcode有任何变化的时候都能影响到二次hash后的底位的不同,这样在下边根据hash获取在桶上的索引的时候最大减少哈希冲突。
## 获取hash在桶上的索引
> 当我们想找一个hash函数想让均匀分布在桶中时,我们首先想到的就是把hashcode对数组长度取模运算,这样一来,元素的分布相对来说是比较均匀的。但是,“模”运算的消耗还是比较大。而JDK中的实现hash根数组的长度-1做一次“&”操作。
~~~
//找到当前的hash在桶的分布节点位置
static int indexFor(int h, int length) {
// assert Integer.bitCount(length) == 1 : "length must be a non-zero power of 2";
return h & (length-1);
}
~~~
这里需要讲一下为什么index=h&(length-1)呢?因为HashMap中的数组长度为2的指数。(lenth-1)的值恰好是数组能容纳的最大容量,且在二进制下每位都是1。所以在经过二次hash之后所获取的code,就能通过一次与操作(取hash值的底位)让其分布在table桶中。
## HashMap的get方法
> 在理解了put之后,get就很简单了。大致思路如下:
> bucket里的第一个节点,直接命中;
>
> * 如果有冲突,则通过key.equals(k)去查找对应的entry
> * 若为树,则在树中通过key.equals(k)查找,O(logn);
> * 若为链表,则在链表中通过key.equals(k)查找,O(n)。
~~~
//HashMap的get方法
public V get(Object key) {
//获取key为null的value
if (key == null)
return getForNullKey();
//获取key对应的Entry实例
Entry entry = getEntry(key);
return null == entry ? null : entry.getValue();
}
//获取Entry
final Entry getEntry(Object key) {
if (size == 0) {
return null;
}
//计算key的hash值
int hash = (key == null) ? 0 : hash(key);
//根据hash调用indexFor方法找到当前key对应的桶的index,遍历该节点对应的链表
for (Entry e = table[indexFor(hash, table.length)];
e != null;
e = e.next) {
Object k;
//判断当前Entry的hash、key的hash和Entry的key、key是否相等
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
return e;
}
return null;
}
~~~
# HashMap的扩容
> 当HashMap中的元素越来越多的时候,因为数组的长度是固定的所以hash冲突的几率也就越来越高,桶的节点处的链表就越来越长,这个时候查找元素的时间复杂度相应的增加。为了提高查询的效率,就要对HashMap的数组进行扩容(这是一个常用的操作,数组扩容这个操作也会出现在ArrayList中。),而在HashMap数组扩容之后,最消耗性能的地方就出现了:原数组中的数据必须重新计算其在新数组中的位置,并放进去,这就是resize。
>
> 当HashMap中的元素个数超过阈值时,就会进行数组扩容,【loadFactor】加载因子的默认值为0.75,【threshold】阈值等于桶长乘以loadFactor这是一个折中的取值。也就是说,默认情况下,数组大小为16,那么当HashMap中元素个数超过16*0.75=12的时候,就把数组的大小扩展为 2*16=32,即扩大一倍,然后重新计算每个元素在数组中的位置。
~~~
//HashMap扩容
void resize(int newCapacity) {
//引用备份
Entry[] oldTable = table;
//原来桶的长度
int oldCapacity = oldTable.length;
//判断是否已经扩容到极限
if (oldCapacity == MAXIMUM_CAPACITY) {
threshold = Integer.MAX_VALUE;
return;
}
//根据容器大小创新的建桶
Entry[] newTable = new Entry[newCapacity];
//
transfer(newTable, initHashSeedAsNeeded(newCapacity));
//重置桶的引用
table = newTable;
//重新计算阈值
threshold = (int)Math.min(newCapacity * loadFactor, MAXIMUM_CAPACITY + 1);
}
//用于初始化hashSeed参数.
//其中hashSeed用于计算key的hash值,它与key的hashCode进行按位异或运算。
//这个hashSeed是一个与实例相关的随机值,主要用于解决hash冲突。
final boolean initHashSeedAsNeeded(int capacity) {
boolean currentAltHashing = hashSeed != 0;
boolean useAltHashing = sun.misc.VM.isBooted() &&
(capacity >= Holder.ALTERNATIVE_HASHING_THRESHOLD);
boolean switching = currentAltHashing ^ useAltHashing;
if (switching) {
hashSeed = useAltHashing
? sun.misc.Hashing.randomHashSeed(this)
: 0;
}
return switching;
}
//桶中数据的迁移
void transfer(Entry[] newTable, boolean rehash) {
//新的痛长
int newCapacity = newTable.length;
for (Entry e : table) {
//遍历桶的没一个节点的链表
while(null != e) {
Entry next = e.next;
//重新计算哈希值
if (rehash) {
e.hash = null == e.key ? 0 : hash(e.key);
}
//找到当前Entry在新桶中的位置
int i = indexFor(e.hash, newCapacity);
//将Entry添加在当桶中的bucketIndex处的链表的头部
e.next = newTable[i];
//将产生的新链表赋值为桶的bucketIndex处
newTable[i] = e;
//遍历当前链表的下一个节点
e = next;
}
}
}
~~~
> * 假设hash算法就是最简单的 key mod table.length(也就是数组的长度)。
> * 最上面的是old hash 表,其中的Hash表的 size = 2, 所以 key = 3, 7, 5,在mod 2以后碰撞发生在 table[1]
> * 接下来的三个步骤是 Hash表 resize 到4,并将所有的 重新resize到新Hash表的过程
[![resize](http://upload-images.jianshu.io/upload_images/1319879-4303ce1a45ea22a0.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240 "resize")](http://upload-images.jianshu.io/upload_images/1319879-4303ce1a45ea22a0.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240 "resize")
> 在HashMap进行扩容的时候有一个点大家发现没,所有Entry的hash值是不需要重新计算的。因为hash值与(length - 1)取的总是hash值的二进制右边底位,扩容一次向左多取一位二进制。
# [](http://dandanlove.com/2017/10/27/late-one-year-hashmap/#%E6%9C%89%E5%85%B3HashMap%E7%9A%84%E6%80%9D%E8%80%83 "有关HashMap的思考")有关HashMap的思考
> * 什么时候会使用HashMap?他有什么特点?
是基于Map接口的实现,存储键值对时,它可以接收null的键值,是非同步的,HashMap存储着Entry(hash, key, value, next)对象。
> * 你知道HashMap的工作原理吗?
通过hash的方法,通过put和get存储和获取对象。存储对象时,我们将K/V传给put方法时,它调用hashCode计算hash从而得到bucket位置,进一步存储,HashMap会根据当前bucket的占用情况自动调整容量(超过Load Facotr则resize为原来的2倍)。获取对象时,我们将K传给get,它调用hashCode计算hash从而得到bucket位置,并进一步调用equals()方法确定键值对。如果发生碰撞的时候,Hashmap通过链表将产生碰撞冲突的元素组织起来,在Java 8中,如果一个bucket中碰撞冲突的元素超过某个限制(默认是8),则使用红黑树来替换链表,从而提高速度。
> * 你知道get和put的原理吗?equals()和hashCode()的都有什么作用?
通过对key的hashCode()进行hashing,并计算下标( n-1 & hash),从而获得buckets的位置。如果产生碰撞,则利用key.equals()方法去链表或树中去查找对应的节点
> * 你知道hash的实现吗?为什么要这样实现?
在通过hashCode()的高位与底位进行异或,主要是从速度、功效、质量来考虑的,这么做可以在bucket的n比较小的时候,也能保证考虑到高低bit都参与到hash的计算中,同时不会有太大的开销。
> * 如果HashMap的大小超过了负载因子(load factor)定义的容量,怎么办?
如果超过了负载因子(默认0.75),则会重新resize一个原来长度两倍的HashMap,并且重新调用hash方法。
# JDK1.8对HashMap的改进
## 代码实现的不同之处
~~~
//链表切换为红黑树的阈值
static final int TREEIFY_THRESHOLD = 8;
//红黑树切花为链表的阈值
static final int UNTREEIFY_THRESHOLD = 6;
//红黑树上的节点个数满足时对整个桶进行扩容
static final int MIN_TREEIFY_CAPACITY = 64;
//红黑树
static final class TreeNodeK,V> extends LinkedHashMap.EntryK,V> {
TreeNode parent; // red-black tree links
TreeNode left;
TreeNode right;
TreeNode prev; // needed to unlink next upon deletion
boolean red;
/*************部分代码省略*****************/
}
//获取key的hashCode,并进行二次hash。二次hash只是将hashcode的高16位于第16位进行异或
static final int hash(Object key) {
int h;
return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}
//resize时hash冲突使用的是红黑树
final Node[] resize() {
/*************部分代码省略*****************/
}
~~~
## 性能的提升
> 哈希碰撞会对hashMap的性能带来灾难性的影响。如果多个hashCode()的值落到同一个桶内的时候,这些值是存储到一个链表中的。最坏的情况下,所有的key都映射到同一个桶中,这样hashmap就退化成了一个链表——查找时间从O(1)到O(n),而使用红黑树代替链表查找时间会变为O(logn)。
参考文章:
[主题:HashMap hash方法分析](http://www.iteye.com/topic/709945)
文章到这里就全部讲述完啦,若有其他需要交流的可以留言哦~!~!
想阅读作者的更多文章,可以查看我 [个人博客](http://dandanlove.com/) 和公共号:
[![振兴书城](http://upload-images.jianshu.io/upload_images/1319879-612c4c66d40ce855.jpg?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240 "振兴书城")](http://upload-images.jianshu.io/upload_images/1319879-612c4c66d40ce855.jpg?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240 "振兴书城")
本文标题:[迟到一年HashMap解读](http://dandanlove.com/2017/10/27/late-one-year-hashmap/)
文章作者:[振兴](http://dandanlove.com/ "回到主页")
发布时间:2017-10-27, 11:35:00
最后更新:2017-11-19, 16:58:40
原始链接:[http://yoursite.com/2017/10/27/late-one-year-hashmap/](http://dandanlove.com/2017/10/27/late-one-year-hashmap/ "迟到一年HashMap解读")
许可协议: ["署名-非商用-相同方式共享 4.0"](http://creativecommons.org/licenses/by-nc-sa/4.0/ "CC BY-NC-SA 4.0 International") 转载请保留原文链接及作者。
- 0-发现
- AndroidInterview-Q-A
- Android能让你少走弯路的干货整理
- LearningNotes
- temp
- temp11
- 部分地址
- 0-待办任务
- 待补充列表
- 0-未分类
- AndroidView事件分发与滑动冲突处理
- Spannable
- 事件分发机制详解
- 1-Java
- 1-Java-01基础
- 未归档
- 你应该知道的JDK知识
- 集合框架
- 1-Java-04合集
- Java之旅0
- Java之旅
- JAVA之旅01
- JAVA之旅02
- JAVA之旅03
- JAVA之旅04
- JAVA之旅05
- JAVA之旅06
- JAVA之旅07
- JAVA之旅08
- JAVA之旅09
- java之旅1
- JAVA之旅10
- JAVA之旅11
- JAVA之旅12
- JAVA之旅13
- JAVA之旅14
- JAVA之旅15
- JAVA之旅16
- JAVA之旅17
- JAVA之旅18
- JAVA之旅19
- java之旅2
- JAVA之旅20
- JAVA之旅21
- JAVA之旅22
- JAVA之旅23
- JAVA之旅24
- JAVA之旅25
- JAVA之旅26
- JAVA之旅27
- JAVA之旅28
- JAVA之旅29
- java之旅3
- JAVA之旅30
- JAVA之旅31
- JAVA之旅32
- JAVA之旅33
- JAVA之旅34
- JAVA之旅35
- 1-Java-05辨析
- HashMapArrayMap
- Java8新特性
- Java8接口默认方法
- 图解HashMap(1)
- 图解HashMap(2)
- 2-Android
- 2-Android-1-基础
- View绘制流程
- 事件分发
- AndroidView的事件分发机制和滑动冲突解决
- 自定义View基础
- 1-安卓自定义View基础-坐标系
- 2-安卓自定义View基础-角度弧度
- 3-安卓自定义View基础-颜色
- 自定义View进阶
- 1-安卓自定义View进阶-分类和流程
- 10-安卓自定义View进阶-Matrix详解
- 11-安卓自定义View进阶-MatrixCamera
- 12-安卓自定义View进阶-事件分发机制原理
- 13-安卓自定义View进阶-事件分发机制详解
- 14-安卓自定义View进阶-MotionEvent详解
- 15-安卓自定义View进阶-特殊形状控件事件处理方案
- 16-安卓自定义View进阶-多点触控详解
- 17-安卓自定义View进阶-手势检测GestureDetector
- 2-安卓自定义View进阶-绘制基本图形
- 3-安卓自定义View进阶-画布操作
- 4-安卓自定义View进阶-图片文字
- 5-安卓自定义View进阶-Path基本操作
- 6-安卓自定义View进阶-贝塞尔曲线
- 7-安卓自定义View进阶-Path完结篇伪
- 8-安卓自定义View进阶-Path玩出花样PathMeasure
- 9-安卓自定义View进阶-Matrix原理
- 通用类介绍
- Application
- 2-Android-2-使用
- 2-Android-02控件
- ViewGroup
- ConstraintLayout
- CoordinatorLayout
- 2-Android-03三方使用
- Dagger2
- Dagger2图文完全教程
- Dagger2最清晰的使用教程
- Dagger2让你爱不释手-终结篇
- Dagger2让你爱不释手-重点概念讲解、融合篇
- dagger2让你爱不释手:基础依赖注入框架篇
- 阅读笔记
- Glide
- Google推荐的图片加载库Glide:最新版使用指南(含新特性)
- rxjava
- 这可能是最好的RxJava2.x入门教程完结版
- 这可能是最好的RxJava2.x入门教程(一)
- 这可能是最好的RxJava2.x入门教程(三)
- 这可能是最好的RxJava2.x入门教程(二)
- 这可能是最好的RxJava2.x入门教程(五)
- 这可能是最好的RxJava2.x入门教程(四)
- 2-Android-3-优化
- 优化概况
- 各种优化
- Android端秒开优化
- apk大小优化
- 内存分析
- 混淆
- 2-Android-4-工具
- adb命令
- 一键分析Android的BugReport
- 版本控制
- git
- git章节简述
- 2-Android-5-源码
- HandlerThread 源码分析
- IntentService的使用和源码分析
- 2-Android-9-辨析
- LRU算法
- 什么是Bitmap
- 常见图片压缩方式
- 3-Kotlin
- Kotlin使用笔记1-草稿
- Kotlin使用笔记2
- kotlin特性草稿
- Kotlin草稿-Delegation
- Kotlin草稿-Field
- Kotlin草稿-object
- 4-JavaScript
- 5-Python
- 6-Other
- Git
- Gradle
- Android中ProGuard配置和总结
- gradle使用笔记
- Nexus私服搭建
- 编译提速最佳实践
- 7-设计模式与架构
- 组件化
- 组件化探索(OKR)
- 1-参考列表
- 2-1-组件化概述
- 2-2-gradle配置
- 2-3-代码编写
- 2-4-常见问题
- 2-9-值得一读
- 8-数据结构与算法
- 0临时文件
- 汉诺塔
- 8-数据-1数据结构
- HashMap
- HashMap、Hashtable、HashSet 和 ConcurrentHashMap 的比较
- 迟到一年HashMap解读
- 8-数据-2算法
- 1个就够了
- Java常用排序算法(必须掌握的8大排序算法)
- 常用排序算法总结(性能+代码)
- 必须知道的八大种排序算法(java实现)
- 9-职业
- 阅读
- 书单
- 面试
- 面试-01-java
- Java面试题全集骆昊(上)
- Java面试题全集骆昊(下)
- Java面试题全集骆昊(中)
- 面试-02-android
- 40道Android面试题
- 面试-03-开源源码
- Android图片加载框架最全解析(二),从源码的角度理解Glide的执行流程
- 面试-07-设计模式
- 面试-08-算法
- 面试-09-其他
- SUMMARY
- 版权说明
- temp111