[TOC]
# 内存对齐的作用
1. 平台原因(移植):不是所有的硬件平台都可以访问任意位置上的任意数据的,有些硬件只能在特定位置取特定数据。
2. 性能问题:经过内存对齐,CPU的内存访问速度会提升。因为对齐的元素只需要一次内存访问,未对齐的需要两次。
# 性能问题
一般程序员会认为内存如下图所示,是有一个个的字节组成,而CPU却不是这样看待的。
![](https://box.kancloud.cn/7e7db871a9c1baa992a09ce19acb72be_340x44.png)
CPU把内存当作一块一块的,块的大小可以是2、4、8、16字节大小,因此CPU读取内存是一块一块读取的。(块的大小称为*内存读取粒度*)
![](https://box.kancloud.cn/11f418021143475bcacaefea0d75aac4_281x43.png)
假设CPU要读取一个int型4字节大小的数据,分两种情况讨论:
1. 数据从0字节开始
2. 数据从1字节开始 假设内存读取粒度为4:
![](https://box.kancloud.cn/d64a62c29471cd0613d351c6df0ac311_369x122.png)
当数据从0字节开始时,CPU只需要读取一次内存即可取到数据。
当数据从1字节开始时,CPU读取数据就变得复杂了,因为数据没有在一个块内存储。这种情况下,CPU先访问内存读取0-3字节数据,在访问内存读取4-7字节数据,然后把0、5、6、7字节的数据去掉,合并1、2、3、4字节数据。这样的操作显然是浪费了很多性能,所以就有了字节对齐,以空间换时间。
![](https://box.kancloud.cn/da7b1fb3bb43311fd6e274b995705ff1_372x194.png)
# 内存对齐规则
默认对齐长度:编译器会有一个默认对齐长度,golang 中 64 为系统默认的对齐长度是 8 (这个默认值规则具体不清楚,后面再来补充)
1. 对于结构的各个成员,第一个成员位于偏移为0的位置,以后每个数据成员的起始位置必须是默认对齐长度和该数据成员长度中最小的长度的倍数。
2. 除了结构成员需要对齐,结构本身也需要对齐,结构的长度必须是编译器默认的对齐长度和成员中最长类型中最小的数据大小的倍数对齐。
# GO类型对齐
~~~
package main
import (
"fmt"
"reflect"
)
type Data struct {
b byte
a int32
x int64
}
type Data1 struct {
b byte
x int64
a int32
}
func main() {
var d Data
t := reflect.TypeOf(d)
fmt.Println(t.Size(),t.Align())
var d1 Data
t1 := reflect.TypeOf(d1)
fmt.Println(t1.Size(),t1.Align())
}
----------
输出结果:
16 8
24 8
~~~
上面的内存结构如下所示:
d 的内存结构:
~~~
b---|aaaa|xxxx|xxxx
d1的内存结构: b---|----|xxxx|xxxx|aaaa|----
~~~
C 语言对齐规则和 golang 一致,C 语言的默认对齐大小由编译器决定,我们也可以通过以下代码修改默认对齐大小。
~~~
pragma pack(2) // 修改默认对齐大小为 2
~~~
- 基础
- 简介
- 主要特征
- 变量和常量
- 编码转换
- 数组
- byte与rune
- big
- sort接口
- 和mysql类型对应
- 函数
- 闭包
- 工作区
- 复合类型
- 指针
- 切片
- map
- 结构体
- sync.Map
- 随机数
- 面向对象
- 匿名组合
- 方法
- 接口
- 权限
- 类型查询
- 异常处理
- error
- panic
- recover
- 自定义错误
- 字符串处理
- 正则表达式
- json
- 文件操作
- os
- 文件读写
- 目录
- bufio
- ioutil
- gob
- 栈帧的内存布局
- shell
- 时间处理
- time详情
- time使用
- new和make的区别
- container
- list
- heap
- ring
- 测试
- 单元测试
- Mock依赖
- delve
- 命令
- TestMain
- path和filepath包
- log日志
- 反射
- 详解
- plugin包
- 信号
- goto
- 协程
- 简介
- 创建
- 协程退出
- runtime
- channel
- select
- 死锁
- 互斥锁
- 读写锁
- 条件变量
- 嵌套
- 计算单个协程占用内存
- 执行规则
- 原子操作
- WaitGroup
- 定时器
- 对象池
- sync.once
- 网络编程
- 分层模型
- socket
- tcp
- udp
- 服务端
- 客户端
- 并发服务器
- Http
- 简介
- http服务器
- http客户端
- 爬虫
- 平滑重启
- context
- httptest
- 优雅中止
- web服务平滑重启
- beego
- 安装
- 路由器
- orm
- 单表增删改查
- 多级表
- orm使用
- 高级查询
- 关系查询
- SQL查询
- 元数据二次定义
- 控制器
- 参数解析
- 过滤器
- 数据输出
- 表单数据验证
- 错误处理
- 日志
- 模块
- cache
- task
- 调试模块
- config
- 部署
- 一些包
- gjson
- goredis
- collection
- sjson
- redigo
- aliyunoss
- 密码
- 对称加密
- 非对称加密
- 单向散列函数
- 消息认证
- 数字签名
- mysql优化
- 常见错误
- go run的错误
- 新手常见错误
- 中级错误
- 高级错误
- 常用工具
- 协程-泄露
- go env
- gometalinter代码检查
- go build
- go clean
- go test
- 包管理器
- go mod
- gopm
- go fmt
- pprof
- 提高编译
- go get
- 代理
- 其他的知识
- go内存对齐
- 细节总结
- nginx路由匹配
- 一些博客
- redis为什么快
- cpu高速缓存
- 常用命令
- Go 永久阻塞的方法
- 常用技巧
- 密码加密解密
- for 循环迭代变量
- 备注
- 垃圾回收
- 协程和纤程
- tar-gz
- 红包算法
- 解决golang.org/x 下载失败
- 逃逸分析
- docker
- 镜像
- 容器
- 数据卷
- 网络管理
- 网络模式
- dockerfile
- docker-composer
- 微服务
- protoBuf
- GRPC
- tls
- consul
- micro
- crontab
- shell调用
- gorhill/cronexpr
- raft
- go操作etcd
- mongodb