[TOC]
# 简介
在Go中http包的Server中,每一个请求在都有一个对应的goroutine去处理。请求处理函数通常会启动额外的goroutine用来访问后端服务,比如数据库和RPC服务。用来处理一个请求的goroutine通常需要访问一些与请求特定的数据,比如终端用户的身份认证信息,验证相关的令牌,请求的截止时间。然后系统才能释放这些goroutine占用的资源。
在Google内部,开发了Context包,专门用来简化对于处理单个请求的多个goroutine之间与请求域的数据,取消信号,截止时间等相关操作,这些操作可能涉及多个API调用。
~~~
go get golang.org/x/net/context命令获取这个包。
~~~
注意: 使用时遵循context规则
~~~
1. 不要将 Context 放入结构体,Context应该作为第一个参数传
入,命名为ctx。
2. 即使函数允许,也不要传入nil的 Context。如果不知道用哪种
Context,可以使用context.TODO()。
3. 使用context的Value相关方法,只应该用于在程序和接口中传递
和请求相关数据,不能用它来传递一些可选的参数
4. 相同的 Context 可以传递给在不同的goroutine;Context 是
并发安全的。
~~~
Context结构
~~~
type Context interface {
Deadline() (deadline time.Time, ok bool)
Done() <-chan struct{}
Err() error
Value(key interface{}) interface{}
}
Deadline() 返回一个time.Time,是当前 Context 的应该结束的时间,ok 表示是否有 deadline
Done() 返回一个struct{}类型的只读 channel
Err() 返回 Context 被取消时的错误
Value(key interface{}) 是 Context 自带的 K-V 存储功能
// Deadline会返回一个超时时间,Goroutine获得了超时时间后,例如可以对某些io操作设定超时时间。获取设置的截止时间的意思,第一个返回式是截止时间,到了这个时间点,Context会自动发起取消请求;第二个返回值ok==false时表示没有设置截止时间,如果需要取消的话,需要调用取消函数进行取消
// Done方法返回一个信道(channel),当Context被撤销或过期时,该信道是关闭的,即它是一个表示Context是否已关闭的信号。返回一个只读的chan,类型为struct{},我们在goroutine中,如果该方法返回的chan可以读取,则意味着parent context已经发起了取消请求,我们通过Done方法收到这个信号后,就应该做清理操作,然后退出goroutine,释放资源。之后,Err 方法会返回一个错误,告知为什么 Context 被取消
// 当Done信道关闭后,Err方法表明Context被撤的原因。如果Context取消的时候,我们就可以得到一个关闭的chan,关闭的chan是可以读取的,所以只要可以读取的时候,就意味着收到Context取消的信号了
// Value可以让Goroutine共享一些数据,当然获得数据是协程安全的。但使用这些数据的时候要注意同步,比如返回了一个map,而这个map的读写则要加锁。Value方法获取该Context上绑定的值,是一个键值对,所以要通过一个Key才可以获取对应的值,这个值一般是线程安全的
~~~
# context实现方法
Context 虽然是个接口,但是并不需要使用方实现,golang内置的context 包,已经帮我们实现了2个方法,一般在代码中,开始上下文的时候都是以这两个作为最顶层的parent context,然后再衍生出子context。这些 Context 对象形成一棵树:当一个 Context 对象被取消时,继承自它的所有 Context 都会被取消。两个实现如下:
~~~
var (
background = new(emptyCtx)
todo = new(emptyCtx)
)
func Background() Context {
return background
}
func TODO() Context {
return todo
}
~~~
一个是Background,主要用于main函数、初始化以及测试代码中,作为Context这个树结构的最顶层的Context,也就是根Context,它不能被取消。BackGound是所有Context的root,不能够被cancel
一个是TODO,如果我们不知道该使用什么Context的时候,可以使用这个,但是实际应用中,暂时还没有使用过这个TODO。
他们两个本质上都是emptyCtx结构体类型,是一个不可取消,没有设置截止时间,没有携带任何值的Context。
~~~
type emptyCtx int
func (*emptyCtx) Deadline() (deadline time.Time, ok bool) {
return
}
func (*emptyCtx) Done() <-chan struct{} {
return nil
}
func (*emptyCtx) Err() error {
return nil
}
func (*emptyCtx) Value(key interface{}) interface{} {
return nil
}
~~~
# Context的继承
有了如上的根Context,那么是如何衍生更多的子Context的呢?这就要靠context包为我们提供的With系列的函数了。
~~~
func WithCancel(parent Context) (ctx Context, cancel CancelFunc)
func WithDeadline(parent Context, deadline time.Time) (Context, CancelFunc)
func WithTimeout(parent Context, timeout time.Duration) (Context, CancelFunc)
func WithValue(parent Context, key, val interface{}) Context
~~~
通过这些函数,就创建了一颗Context树,树的每个节点都可以有任意多个子节点,节点层级可以有任意多个。
WithCancel函数,传递一个父Context作为参数,返回子Context,以及一个取消函数用来取消Context。
WithDeadline函数,和WithCancel差不多,它会多传递一个截止时间参数,意味着到了这个时间点,会自动取消Context,当然我们也可以不等到这个时候,可以提前通过取消函数进行取消。
WithTimeout和WithDeadline基本上一样,这个表示是超时自动取消,是多少时间后自动取消Context的意思。
WithValue函数和取消Context无关,它是为了生成一个绑定了一个键值对数据的Context,这个绑定的数据可以通过Context.Value方法访问到,这是我们实际用经常要用到的技巧,一般我们想要通过上下文来传递数据时,可以通过这个方法,如我们需要tarce追踪系统调用栈的时候。
前三个函数都返回一个取消函数`CancelFunc`,这是一个函数类型,它的定义非常简单
~~~go
type CancelFunc func()
~~~
这就是取消函数的类型,该函数可以取消一个Context,以及这个节点Context下所有的所有的Context,不管有多少层级。
# 常用方法
1. 调用Context Done方法取消
~~~
func Stream(ctx context.Context, out chan<- Value) error {
for {
v, err := DoSomething(ctx)
if err != nil {
return err
}
select {
case <-ctx.Done():
return ctx.Err()
case out <- v:
}
}
}
~~~
2. 通过 context.WithValue 来传值
~~~
func main() {
ctx, cancel := context.WithCancel(context.Background())
valueCtx := context.WithValue(ctx, "key", "add value")
go watch(valueCtx)
time.Sleep(10 * time.Second)
cancel()
time.Sleep(5 * time.Second)
}
func watch(ctx context.Context) {
for {
select {
case <-ctx.Done():
//get value
fmt.Println(ctx.Value("key"), "is cancel")
return
default:
//get value
fmt.Println(ctx.Value("key"), "int goroutine")
time.Sleep(2 * time.Second)
}
}
}
~~~
# 网络超时请求控制
~~~
package main
import (
"fmt"
"sync"
"time"
"golang.org/x/net/context"
)
var (
wg sync.WaitGroup
)
func work(ctx context.Context) error {
defer wg.Done()
for i := 0; i < 1000; i++ {
select {
case <-time.After(2 * time.Second):
fmt.Println("Doing some work ", i)
// we received the signal of cancelation in this channel
case <-ctx.Done():
fmt.Println("Cancel the context ", i)
return ctx.Err()
}
}
return nil
}
func main() {
ctx, cancel := context.WithTimeout(context.Background(), 4*time.Second)
//释放资源
defer cancel()
fmt.Println("Hey, I'm going to do some work")
wg.Add(1)
go work(ctx)
wg.Wait()
fmt.Println("Finished. I'm going home")
}
~~~
4. 截止时间 取消 context.WithDeadline
~~~
package main
import (
"context"
"fmt"
"time"
)
func main() {
d := time.Now().Add(1 * time.Second)
ctx, cancel := context.WithDeadline(context.Background(), d)
// Even though ctx will be expired, it is good practice to call its
// cancelation function in any case. Failure to do so may keep the
// context and its parent alive longer than necessary.
defer cancel()
select {
case <-time.After(2 * time.Second):
fmt.Println("oversleep")
case <-ctx.Done():
fmt.Println(ctx.Err())
}
}
~~~
# 控制多个协程
使用Context控制一个goroutine的例子如上,非常简单,下面我们看看控制多个goroutine的例子,其实也比较简单
~~~go
func main() {
ctx, cancel := context.WithCancel(context.Background())
go watch(ctx,"【监控1】")
go watch(ctx,"【监控2】")
go watch(ctx,"【监控3】")
time.Sleep(10 * time.Second)
fmt.Println("可以了,通知监控停止")
cancel()
//为了检测监控过是否停止,如果没有监控输出,就表示停止了
time.Sleep(5 * time.Second)
}
func watch(ctx context.Context, name string) {
for {
select {
case <-ctx.Done():
fmt.Println(name,"监控退出,停止了...")
return
default:
fmt.Println(name,"goroutine监控中...")
time.Sleep(2 * time.Second)
}
}
}
~~~
示例中启动了3个监控goroutine进行不断的监控,每一个都使用了Context进行跟踪,当我们使用`cancel`函数通知取消时,这3个goroutine都会被结束。这就是Context的控制能力,它就像一个控制器一样,按下开关后,所有基于这个Context或者衍生的子Context都会收到通知,这时就可以进行清理操作了,最终释放goroutine,这就优雅的解决了goroutine启动后不可控的问题。
- 基础
- 简介
- 主要特征
- 变量和常量
- 编码转换
- 数组
- byte与rune
- big
- sort接口
- 和mysql类型对应
- 函数
- 闭包
- 工作区
- 复合类型
- 指针
- 切片
- map
- 结构体
- sync.Map
- 随机数
- 面向对象
- 匿名组合
- 方法
- 接口
- 权限
- 类型查询
- 异常处理
- error
- panic
- recover
- 自定义错误
- 字符串处理
- 正则表达式
- json
- 文件操作
- os
- 文件读写
- 目录
- bufio
- ioutil
- gob
- 栈帧的内存布局
- shell
- 时间处理
- time详情
- time使用
- new和make的区别
- container
- list
- heap
- ring
- 测试
- 单元测试
- Mock依赖
- delve
- 命令
- TestMain
- path和filepath包
- log日志
- 反射
- 详解
- plugin包
- 信号
- goto
- 协程
- 简介
- 创建
- 协程退出
- runtime
- channel
- select
- 死锁
- 互斥锁
- 读写锁
- 条件变量
- 嵌套
- 计算单个协程占用内存
- 执行规则
- 原子操作
- WaitGroup
- 定时器
- 对象池
- sync.once
- 网络编程
- 分层模型
- socket
- tcp
- udp
- 服务端
- 客户端
- 并发服务器
- Http
- 简介
- http服务器
- http客户端
- 爬虫
- 平滑重启
- context
- httptest
- 优雅中止
- web服务平滑重启
- beego
- 安装
- 路由器
- orm
- 单表增删改查
- 多级表
- orm使用
- 高级查询
- 关系查询
- SQL查询
- 元数据二次定义
- 控制器
- 参数解析
- 过滤器
- 数据输出
- 表单数据验证
- 错误处理
- 日志
- 模块
- cache
- task
- 调试模块
- config
- 部署
- 一些包
- gjson
- goredis
- collection
- sjson
- redigo
- aliyunoss
- 密码
- 对称加密
- 非对称加密
- 单向散列函数
- 消息认证
- 数字签名
- mysql优化
- 常见错误
- go run的错误
- 新手常见错误
- 中级错误
- 高级错误
- 常用工具
- 协程-泄露
- go env
- gometalinter代码检查
- go build
- go clean
- go test
- 包管理器
- go mod
- gopm
- go fmt
- pprof
- 提高编译
- go get
- 代理
- 其他的知识
- go内存对齐
- 细节总结
- nginx路由匹配
- 一些博客
- redis为什么快
- cpu高速缓存
- 常用命令
- Go 永久阻塞的方法
- 常用技巧
- 密码加密解密
- for 循环迭代变量
- 备注
- 垃圾回收
- 协程和纤程
- tar-gz
- 红包算法
- 解决golang.org/x 下载失败
- 逃逸分析
- docker
- 镜像
- 容器
- 数据卷
- 网络管理
- 网络模式
- dockerfile
- docker-composer
- 微服务
- protoBuf
- GRPC
- tls
- consul
- micro
- crontab
- shell调用
- gorhill/cronexpr
- raft
- go操作etcd
- mongodb