[TOC]
# 定时器
~~~
type Timer struct {
C<-chan Time
r runtimeTimer
}
~~~
## Timer
一个定时器,代表未来的一个单一事件,你可以告诉timer你要等待多长时间,它提供一个channel,在将来的那个时间channel提供了一个时间值
## 延时
**time.NewTimer时间到了,只响应一次**
~~~
func main() {
//time.NewTimer时间到了,只响应一次
//创建一个定时器,设置时间为2s,2s后,往time通道写内容(当前时间)
timer := time.NewTimer(2 * time.Second)
fmt.Println("当前时间: ", time.Now())
//2s后,往timer.c写数据,有数据后,就可以读取
t := <-timer.C //channel没有数据前后阻塞
fmt.Println("t = ", t)
}
~~~
**time.After(2 * time.Second)延迟多少秒产生个事件**
~~~
func main() {
//定时2秒,2秒后产生一个事件,往channel里面写内容
<-time.After(2 * time.Second)
fmt.Println("时间到")
}
~~~
## 停止
关闭定时器,定时器就不起作用了
~~~
func main() {
timer := time.NewTimer(3 * time.Second)
go func() {
<-timer.C
fmt.Println("子协程可以打印了,因为定时器的时间到了")
}()
//关闭定时器
timer.Stop()
for {
}
}
~~~
## 重置
~~~
func main() {
timer := time.NewTimer(3 * time.Second)
//重置上面的那个无效
flag := timer.Reset(1 * time.Second)
fmt.Println(flag) //true
<-timer.C
fmt.Println("时间到")
}
~~~
# Ticker
定时触发的计时器,它**会以一个间隔(interval)往channel发送一个事件(当前时间),而channel的接收者可以以固定的时间间隔从channel中读取事件**
~~~
func main() {
ticker := time.NewTicker(1 * time.Second)
i := 0
for {
<-ticker.C
i++
fmt.Println("i = ", i)
if i ==5 {
//停止ticker
ticker.Stop()
break
}
}
}
~~~
# 不断取出数据
~~~
intChan2 := getIntChan()
for elem := range intChan2 {
fmt.Printf("The element in intChan2: %v\n", elem)
}
~~~
我把调用getIntChan得到的结果值赋给了变量intChan2,然后用for语句循环地取出了该通道中的所有元素值,并打印出来。
这里的for语句也可以被称为带有range子句的for语句。它的用法我在后面讲for语句的时候专门说明。现在你只需要知道关于它的三件事。
一、这样一条for语句会不断地尝试从intChan2种取出元素值,即使intChan2被关闭,它也会在取出所有剩余的元素值之后再结束执行。
二、当intChan2中没有元素值时,它会被阻塞在有for关键字的那一行,直到有新的元素值可取。
三、假设intChan2的值为nil,那么它会被永远阻塞在有for关键字的那一行。
这就是带range子句的for语句与通道的联用方式。不过,它是一种用途比较广泛的语句,还可以被用来从其他一些类型的值中获取元素。除此之外,Go 语言还有一种专门为了操作通道而存在的语句:select语句
- 基础
- 简介
- 主要特征
- 变量和常量
- 编码转换
- 数组
- byte与rune
- big
- sort接口
- 和mysql类型对应
- 函数
- 闭包
- 工作区
- 复合类型
- 指针
- 切片
- map
- 结构体
- sync.Map
- 随机数
- 面向对象
- 匿名组合
- 方法
- 接口
- 权限
- 类型查询
- 异常处理
- error
- panic
- recover
- 自定义错误
- 字符串处理
- 正则表达式
- json
- 文件操作
- os
- 文件读写
- 目录
- bufio
- ioutil
- gob
- 栈帧的内存布局
- shell
- 时间处理
- time详情
- time使用
- new和make的区别
- container
- list
- heap
- ring
- 测试
- 单元测试
- Mock依赖
- delve
- 命令
- TestMain
- path和filepath包
- log日志
- 反射
- 详解
- plugin包
- 信号
- goto
- 协程
- 简介
- 创建
- 协程退出
- runtime
- channel
- select
- 死锁
- 互斥锁
- 读写锁
- 条件变量
- 嵌套
- 计算单个协程占用内存
- 执行规则
- 原子操作
- WaitGroup
- 定时器
- 对象池
- sync.once
- 网络编程
- 分层模型
- socket
- tcp
- udp
- 服务端
- 客户端
- 并发服务器
- Http
- 简介
- http服务器
- http客户端
- 爬虫
- 平滑重启
- context
- httptest
- 优雅中止
- web服务平滑重启
- beego
- 安装
- 路由器
- orm
- 单表增删改查
- 多级表
- orm使用
- 高级查询
- 关系查询
- SQL查询
- 元数据二次定义
- 控制器
- 参数解析
- 过滤器
- 数据输出
- 表单数据验证
- 错误处理
- 日志
- 模块
- cache
- task
- 调试模块
- config
- 部署
- 一些包
- gjson
- goredis
- collection
- sjson
- redigo
- aliyunoss
- 密码
- 对称加密
- 非对称加密
- 单向散列函数
- 消息认证
- 数字签名
- mysql优化
- 常见错误
- go run的错误
- 新手常见错误
- 中级错误
- 高级错误
- 常用工具
- 协程-泄露
- go env
- gometalinter代码检查
- go build
- go clean
- go test
- 包管理器
- go mod
- gopm
- go fmt
- pprof
- 提高编译
- go get
- 代理
- 其他的知识
- go内存对齐
- 细节总结
- nginx路由匹配
- 一些博客
- redis为什么快
- cpu高速缓存
- 常用命令
- Go 永久阻塞的方法
- 常用技巧
- 密码加密解密
- for 循环迭代变量
- 备注
- 垃圾回收
- 协程和纤程
- tar-gz
- 红包算法
- 解决golang.org/x 下载失败
- 逃逸分析
- docker
- 镜像
- 容器
- 数据卷
- 网络管理
- 网络模式
- dockerfile
- docker-composer
- 微服务
- protoBuf
- GRPC
- tls
- consul
- micro
- crontab
- shell调用
- gorhill/cronexpr
- raft
- go操作etcd
- mongodb