[TOC]
# 使用指针作为方法的 receiver
只要值是可寻址的,就可以在值上直接调用指针方法。即是对一个方法,它的 receiver 是指针就足矣。
但不是所有值都是可寻址的,比如 map 类型的元素、通过 interface 引用的变量:
~~~
type data struct {
name string
}
type printer interface {
print()
}
func (p *data) print() {
fmt.Println("name: ", p.name)
}
func main() {
d1 := data{"one"}
d1.print() // d1 变量可寻址,可直接调用指针 receiver 的方法
var in printer = data{"two"}
in.print() // 类型不匹配
m := map[string]data{
"x": data{"three"},
}
m["x"].print() // m["x"] 是不可寻址的 // 变动频繁
}
~~~
> cannot use data literal (type data) as type printer in assignment:
>
> data does not implement printer (print method has pointer receiver)
>
> cannot call pointer method on m\["x"\]
> cannot take the address of m\["x"\]
# 更新 map 字段的值
如果 map 一个字段的值是 struct 类型,则无法直接更新该 struct 的单个字段:
~~~
// 无法直接更新 struct 的字段值
type data struct {
name string
}
func main() {
m := map[string]data{
"x": {"Tom"},
}
m["x"].name = "Jerry"
}
~~~
> cannot assign to struct field m\["x"\].name in map
因为 map 中的元素是不可寻址的。需区分开的是,slice 的元素可寻址:
~~~
type data struct {
name string
}
func main() {
s := []data{{"Tom"}}
s[0].name = "Jerry"
fmt.Println(s) // [{Jerry}]
}
~~~
注意:不久前 gccgo 编译器可更新 map struct 元素的字段值,不过很快便修复了,官方认为是 Go1.3 的潜在特性,无需及时实现,依旧在 todo list 中。
更新 map 中 struct 元素的字段值,有 2 个方法:
* 使用局部变量
~~~
// 提取整个 struct 到局部变量中,修改字段值后再整个赋值
type data struct {
name string
}
func main() {
m := map[string]data{
"x": {"Tom"},
}
r := m["x"]
r.name = "Jerry"
m["x"] = r
fmt.Println(m) // map[x:{Jerry}]
}
~~~
* 使用指向元素的 map 指针
~~~
func main() {
m := map[string]*data{
"x": {"Tom"},
}
m["x"].name = "Jerry" // 直接修改 m["x"] 中的字段
fmt.Println(m["x"]) // &{Jerry}
}
~~~
但是要注意下边这种误用:
~~~
func main() {
m := map[string]*data{
"x": {"Tom"},
}
m["z"].name = "what???"
fmt.Println(m["x"])
}
~~~
> panic: runtime error: invalid memory address or nil pointer dereference
# nil interface 和 nil interface 值
虽然 interface 看起来像指针类型,但它不是。interface 类型的变量只有在类型和值均为 nil 时才为 nil
如果你的 interface 变量的值是跟随其他变量变化的(雾),与 nil 比较相等时小心:
~~~
func main() {
var data *byte
var in interface{}
fmt.Println(data, data == nil) // <nil> true
fmt.Println(in, in == nil) // <nil> true
in = data
fmt.Println(in, in == nil) // <nil> false // data 值为 nil,但 in 值不为 nil
}
~~~
如果你的函数返回值类型是 interface,更要小心这个坑:
~~~
// 错误示例
func main() {
doIt := func(arg int) interface{} {
var result *struct{} = nil
if arg > 0 {
result = &struct{}{}
}
return result
}
if res := doIt(-1); res != nil {
fmt.Println("Good result: ", res) // Good result: <nil>
fmt.Printf("%T\n", res) // *struct {} // res 不是 nil,它的值为 nil
fmt.Printf("%v\n", res) // <nil>
}
}
// 正确示例
func main() {
doIt := func(arg int) interface{} {
var result *struct{} = nil
if arg > 0 {
result = &struct{}{}
} else {
return nil // 明确指明返回 nil
}
return result
}
if res := doIt(-1); res != nil {
fmt.Println("Good result: ", res)
} else {
fmt.Println("Bad result: ", res) // Bad result: <nil>
}
}
~~~
# 堆栈变量
你并不总是清楚你的变量是分配到了堆还是栈。
在 C++ 中使用`new`创建的变量总是分配到堆内存上的,但在 Go 中即使使用`new()`、`make()`来创建变量,变量为内存分配位置依旧归 Go 编译器管。
Go 编译器会根据变量的大小及其 "escape analysis" 的结果来决定变量的存储位置,故能准确返回本地变量的地址,这在 C/C++ 中是不行的。
在 go build 或 go run 时,加入 -m 参数,能准确分析程序的变量分配位置:
![](https://img.kancloud.cn/97/28/9728ff41e02986385352ad03bebdd2d7_411x185.png)
# GOMAXPROCS、Concurrency(并发)and Parallelism(并行)
Go 1.4 及以下版本,程序只会使用 1 个执行上下文 / OS 线程,即任何时间都最多只有 1 个 goroutine 在执行。
Go 1.5 版本将可执行上下文的数量设置为`runtime.NumCPU()`返回的逻辑 CPU 核心数,这个数与系统实际总的 CPU 逻辑核心数是否一致,取决于你的 CPU 分配给程序的核心数,可以使用`GOMAXPROCS`环境变量或者动态的使用`runtime.GOMAXPROCS()`来调整。
误区:`GOMAXPROCS`表示执行 goroutine 的 CPU 核心数,参考[文档](https://golang.org/pkg/runtime/)
`GOMAXPROCS`的值是可以超过 CPU 的实际数量的,在 1.5 中最大为 256
~~~
func main() {
fmt.Println(runtime.GOMAXPROCS(-1)) // 4
fmt.Println(runtime.NumCPU()) // 4
runtime.GOMAXPROCS(20)
fmt.Println(runtime.GOMAXPROCS(-1)) // 20
runtime.GOMAXPROCS(300)
fmt.Println(runtime.GOMAXPROCS(-1)) // Go 1.9.2 // 300
}
~~~
# 读写操作的重新排序
Go 可能会重排一些操作的执行顺序,可以保证在一个 goroutine 中操作是顺序执行的,但不保证多 goroutine 的执行顺序
~~~
var _ = runtime.GOMAXPROCS(3)
var a, b int
func u1() {
a = 1
b = 2
}
func u2() {
a = 3
b = 4
}
func p() {
println(a)
println(b)
}
func main() {
go u1() // 多个 goroutine 的执行顺序不定
go u2()
go p()
time.Sleep(1 * time.Second)
}
~~~
![](https://img.kancloud.cn/9b/41/9b4150eacc3c04771d44fe7358411cec_193x210.png)
如果你想保持多 goroutine 像代码中的那样顺序执行,可以使用 channel 或 sync 包中的锁机制等。
# 优先调度
你的程序可能出现一个 goroutine 在运行时阻止了其他 goroutine 的运行,比如程序中有一个不让调度器运行的`for`循环:
~~~
func main() {
done := false
go func() {
done = true
}()
for !done {
}
println("done !")
}
~~~
`for`的循环体不必为空,但如果代码不会触发调度器执行,将出现问题。
调度器会在 GC、Go 声明、阻塞 channel、阻塞系统调用和锁操作后再执行,也会在非内联函数调用时执行:
~~~
func main() {
done := false
go func() {
done = true
}()
for !done {
println("not done !") // 并不内联执行
}
println("done !")
}
~~~
可以添加`-m`参数来分析`for`代码块中调用的内联函数:
![](https://img.kancloud.cn/34/de/34de87a87fd5a2e9c0ff41414f137181_358x278.png)
你也可以使用 runtime 包中的`Gosched()`来 手动启动调度器:
~~~
func main() {
done := false
go func() {
done = true
}()
for !done {
runtime.Gosched()
}
println("done !")
}
~~~
运行效果:
![](https://img.kancloud.cn/a9/23/a92333acabc7a225d4762caa0188f78d_358x179.png)
- 基础
- 简介
- 主要特征
- 变量和常量
- 编码转换
- 数组
- byte与rune
- big
- sort接口
- 和mysql类型对应
- 函数
- 闭包
- 工作区
- 复合类型
- 指针
- 切片
- map
- 结构体
- sync.Map
- 随机数
- 面向对象
- 匿名组合
- 方法
- 接口
- 权限
- 类型查询
- 异常处理
- error
- panic
- recover
- 自定义错误
- 字符串处理
- 正则表达式
- json
- 文件操作
- os
- 文件读写
- 目录
- bufio
- ioutil
- gob
- 栈帧的内存布局
- shell
- 时间处理
- time详情
- time使用
- new和make的区别
- container
- list
- heap
- ring
- 测试
- 单元测试
- Mock依赖
- delve
- 命令
- TestMain
- path和filepath包
- log日志
- 反射
- 详解
- plugin包
- 信号
- goto
- 协程
- 简介
- 创建
- 协程退出
- runtime
- channel
- select
- 死锁
- 互斥锁
- 读写锁
- 条件变量
- 嵌套
- 计算单个协程占用内存
- 执行规则
- 原子操作
- WaitGroup
- 定时器
- 对象池
- sync.once
- 网络编程
- 分层模型
- socket
- tcp
- udp
- 服务端
- 客户端
- 并发服务器
- Http
- 简介
- http服务器
- http客户端
- 爬虫
- 平滑重启
- context
- httptest
- 优雅中止
- web服务平滑重启
- beego
- 安装
- 路由器
- orm
- 单表增删改查
- 多级表
- orm使用
- 高级查询
- 关系查询
- SQL查询
- 元数据二次定义
- 控制器
- 参数解析
- 过滤器
- 数据输出
- 表单数据验证
- 错误处理
- 日志
- 模块
- cache
- task
- 调试模块
- config
- 部署
- 一些包
- gjson
- goredis
- collection
- sjson
- redigo
- aliyunoss
- 密码
- 对称加密
- 非对称加密
- 单向散列函数
- 消息认证
- 数字签名
- mysql优化
- 常见错误
- go run的错误
- 新手常见错误
- 中级错误
- 高级错误
- 常用工具
- 协程-泄露
- go env
- gometalinter代码检查
- go build
- go clean
- go test
- 包管理器
- go mod
- gopm
- go fmt
- pprof
- 提高编译
- go get
- 代理
- 其他的知识
- go内存对齐
- 细节总结
- nginx路由匹配
- 一些博客
- redis为什么快
- cpu高速缓存
- 常用命令
- Go 永久阻塞的方法
- 常用技巧
- 密码加密解密
- for 循环迭代变量
- 备注
- 垃圾回收
- 协程和纤程
- tar-gz
- 红包算法
- 解决golang.org/x 下载失败
- 逃逸分析
- docker
- 镜像
- 容器
- 数据卷
- 网络管理
- 网络模式
- dockerfile
- docker-composer
- 微服务
- protoBuf
- GRPC
- tls
- consul
- micro
- crontab
- shell调用
- gorhill/cronexpr
- raft
- go操作etcd
- mongodb