[TOC]
![](https://box.kancloud.cn/2dc03ffa960cdab43bc29174f827e126_312x836.png)
在[机器学习](https://zh.wikipedia.org/wiki/%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0 "机器学习")和[认知科学](https://zh.wikipedia.org/wiki/%E8%AE%A4%E7%9F%A5%E7%A7%91%E5%AD%A6 "认知科学")领域,**人工神经网络**([英文](https://zh.wikipedia.org/wiki/%E8%8B%B1%E6%96%87 "英文"):artificial neural network,缩写ANN),简称**神经网络**([英文](https://zh.wikipedia.org/wiki/%E8%8B%B1%E6%96%87 "英文"):neural network,缩写NN)或**类神经网络**,是一种模仿[生物神经网络](https://zh.wikipedia.org/wiki/%E7%94%9F%E7%89%A9%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C "生物神经网络")(动物的[中枢神经系统](https://zh.wikipedia.org/wiki/%E4%B8%AD%E6%A8%9E%E7%A5%9E%E7%B6%93%E7%B3%BB%E7%B5%B1 "中枢神经系统"),特别是[大脑](https://zh.wikipedia.org/wiki/%E5%A4%A7%E8%84%91 "大脑"))的结构和功能的[数学模型](https://zh.wikipedia.org/wiki/%E6%95%B0%E5%AD%A6%E6%A8%A1%E5%9E%8B "数学模型")或[计算模型](https://zh.wikipedia.org/wiki/%E8%AE%A1%E7%AE%97%E6%A8%A1%E5%9E%8B "计算模型"),用于对[函数](https://zh.wikipedia.org/wiki/%E5%87%BD%E6%95%B0 "函数")进行估计或近似。神经网络由大量的人工神经元联结进行计算。大多数情况下人工神经网络能在外界信息的基础上改变内部结构,是一种[自适应系统](https://zh.wikipedia.org/w/index.php?title=%E8%87%AA%E9%80%82%E5%BA%94%E7%B3%BB%E7%BB%9F&action=edit&redlink=1 "自适应系统(页面不存在)")。[[来源请求]](https://zh.wikipedia.org/wiki/Wikipedia:%E5%88%97%E6%98%8E%E6%9D%A5%E6%BA%90 "Wikipedia:列明来源")现代神经网络是一种[非线性](https://zh.wikipedia.org/wiki/%E9%9D%9E%E7%BA%BF%E6%80%A7 "非线性")[统计性数据建模](https://zh.wikipedia.org/w/index.php?title=%E7%BB%9F%E8%AE%A1%E6%80%A7%E6%95%B0%E6%8D%AE%E5%BB%BA%E6%A8%A1&action=edit&redlink=1 "统计性数据建模(页面不存在)")工具。典型的神经网络具有以下三个部分:
* **结构** (**Architecture**) 结构指定了网络中的变量和它们的拓扑关系。例如,神经网络中的变量可以是神经元连接的[权重](https://zh.wikipedia.org/wiki/%E6%9D%83%E9%87%8D "权重")(weights)和神经元的激励值(activities of the neurons)。
* **激励函数(Activity Rule)** 大部分神经网络模型具有一个短时间尺度的动力学规则,来定义神经元如何根据其他神经元的活动来改变自己的激励值。一般激励函数依赖于网络中的权重(即该网络的参数)。
* **学习规则(Learning Rule)** 学习规则指定了网络中的权重如何随着时间推进而调整。这一般被看做是一种长时间尺度的动力学规则。一般情况下,学习规则依赖于神经元的激励值。它也可能依赖于监督者提供的目标值和当前权重的值。
例如,用于[手写识别](https://zh.wikipedia.org/wiki/%E6%89%8B%E5%86%99%E8%AF%86%E5%88%AB "手写识别")的一个神经网络,有一组输入神经元。输入神经元会被输入图像的数据所激发。在激励值被加权并通过一个[函数](https://zh.wikipedia.org/wiki/%E5%87%BD%E6%95%B0 "函数")(由网络的设计者确定)后,这些神经元的激励值被传递到其他神经元。这个过程不断重复,直到输出神经元被激发。最后,输出神经元的激励值决定了识别出来的是哪个字母。
神经网络的构筑理念是受到生物(人或其他动物)神经网络功能的运作启发而产生的。人工神经网络通常是通过一个基于数学统计学类型的学习方法(Learning Method)得以优化,所以人工神经网络也是数学统计学方法的一种实际应用,通过统计学的标准数学方法我们能够得到大量的可以用函数来表达的局部结构空间,另一方面在人工智能学的人工感知领域,我们通过数学统计学的应用可以来做人工感知方面的决定问题(也就是说通过统计学的方法,人工神经网络能够类似人一样具有简单的决定能力和简单的判断能力),这种方法比起正式的逻辑学推理演算更具有优势。
和其他[机器学习](https://zh.wikipedia.org/wiki/%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0 "机器学习")方法一样,神经网络已经被用于解决各种各样的问题,例如[机器视觉](https://zh.wikipedia.org/wiki/%E6%9C%BA%E5%99%A8%E8%A7%86%E8%A7%89 "机器视觉")和[语音识别](https://zh.wikipedia.org/wiki/%E8%AF%AD%E9%9F%B3%E8%AF%86%E5%88%AB "语音识别")。这些问题都是很难被传统基于规则的编程所解决的。
## 背景[[编辑](https://zh.wikipedia.org/w/index.php?title=%E4%BA%BA%E5%B7%A5%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C&action=edit§ion=1 "编辑小节:背景")]
对人类[中枢神经系统](https://zh.wikipedia.org/wiki/%E4%B8%AD%E6%9E%A2%E7%A5%9E%E7%BB%8F%E7%B3%BB%E7%BB%9F "中枢神经系统")的观察启发了人工神经网络这个概念。在人工神经网络中,简单的人工节点,称作神经元(neurons),连接在一起形成一个类似[生物神经网络](https://zh.wikipedia.org/wiki/%E7%94%9F%E7%89%A9%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C "生物神经网络")的网状结构。
人工神经网络目前没有一个统一的正式定义。不过,具有下列特点的[统计模型](https://zh.wikipedia.org/wiki/%E7%BB%9F%E8%AE%A1%E6%A8%A1%E5%9E%8B "统计模型")可以被称作是“神经化”的:
* 具有一组可以被调节的权重,换言之,被学习算法调节的数值参数,并且
* 可以估计输入数据的[非线性函数](https://zh.wikipedia.org/w/index.php?title=%E9%9D%9E%E7%BA%BF%E6%80%A7%E5%87%BD%E6%95%B0&action=edit&redlink=1 "非线性函数(页面不存在)")关系
这些可调节的权重可以被看做神经元之间的连接强度。
人工神经网络与生物神经网络的相似之处在于,它可以集体地、并行地计算函数的各个部分,而不需要描述每一个单元的特定任务。神经网络这个词一般指[统计学](https://zh.wikipedia.org/wiki/%E7%BB%9F%E8%AE%A1%E5%AD%A6 "统计学")、[认知心理学](https://zh.wikipedia.org/wiki/%E8%AE%A4%E7%9F%A5%E5%BF%83%E7%90%86%E5%AD%A6 "认知心理学")和[人工智能](https://zh.wikipedia.org/wiki/%E4%BA%BA%E5%B7%A5%E6%99%BA%E8%83%BD "人工智能")领域使用的模型,而控制中央神经系统的神经网络属于[理论神经学](https://zh.wikipedia.org/w/index.php?title=%E7%90%86%E8%AE%BA%E7%A5%9E%E7%BB%8F%E5%AD%A6&action=edit&redlink=1 "理论神经学(页面不存在)")和[计算神经学](https://zh.wikipedia.org/wiki/%E8%AE%A1%E7%AE%97%E7%A5%9E%E7%BB%8F%E7%A7%91%E5%AD%A6 "计算神经科学")。[[1]](https://zh.wikipedia.org/wiki/%E4%BA%BA%E5%B7%A5%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C#cite_note-1)
在神经网络的现代软件实现中,被生物学启发的那种方法已经很大程度上被抛弃了,取而代之的是基于[统计学](https://zh.wikipedia.org/wiki/%E7%BB%9F%E8%AE%A1%E5%AD%A6 "统计学")和[信号处理](https://zh.wikipedia.org/wiki/%E4%BF%A1%E5%8F%B7%E5%A4%84%E7%90%86 "信号处理")的更加实用的方法。在一些软件系统中,神经网络或者神经网络的一部分(例如人工神经元)是大型系统中的一个部分。这些系统结合了适应性的和非适应性的元素。虽然这种系统使用的这种更加普遍的方法更适宜解决现实中的问题,但是这和传统的连接主义人工智能已经没有什么关联了。不过它们还有一些共同点:非线性、分布式、并行化,局部性计算以及适应性。从历史的角度讲,神经网络模型的应用标志着二十世纪八十年代后期从高度符号化的人工智能(以用条件规则表达知识的[专家系统](https://zh.wikipedia.org/wiki/%E4%B8%93%E5%AE%B6%E7%B3%BB%E7%BB%9F "专家系统")为代表)向低符号化的机器学习(以用动力系统的参数表达知识为代表)的转变。
## 历史[[编辑](https://zh.wikipedia.org/w/index.php?title=%E4%BA%BA%E5%B7%A5%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C&action=edit§ion=2 "编辑小节:历史")]
[沃伦·麦卡洛克](https://zh.wikipedia.org/wiki/%E6%B2%83%E4%BC%A6%C2%B7%E9%BA%A6%E5%8D%A1%E6%B4%9B%E5%85%8B "沃伦·麦卡洛克")和[沃尔特·皮茨](https://zh.wikipedia.org/w/index.php?title=%E6%B2%83%E5%B0%94%E7%89%B9%C2%B7%E7%9A%AE%E8%8C%A8&action=edit&redlink=1 "沃尔特·皮茨(页面不存在)")(1943)[[2]](https://zh.wikipedia.org/wiki/%E4%BA%BA%E5%B7%A5%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C#cite_note-2)基于数学和一种称为阈值逻辑的算法创造了一种神经网络的计算模型。这种模型使得神经网络的研究分裂为两种不同研究思路。一种主要关注大脑中的生物学过程,另一种主要关注神经网络在人工智能里的应用。
### 赫布型学习[[编辑](https://zh.wikipedia.org/w/index.php?title=%E4%BA%BA%E5%B7%A5%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C&action=edit§ion=3 "编辑小节:赫布型学习")]
二十世纪40年代后期,心理学家[唐纳德·赫布](https://zh.wikipedia.org/wiki/%E5%94%90%E7%BA%B3%E5%BE%B7%C2%B7%E8%B5%AB%E5%B8%83 "唐纳德·赫布")根据神经可塑性的机制创造了一种对学习的假说,现在称作[赫布型学习](https://zh.wikipedia.org/wiki/%E8%B5%AB%E5%B8%83%E5%9E%8B%E5%AD%A6%E4%B9%A0 "赫布型学习")。赫布型学习被认为是一种典型的[非监督式学习](https://zh.wikipedia.org/wiki/%E9%9D%9E%E7%9B%91%E7%9D%A3%E5%BC%8F%E5%AD%A6%E4%B9%A0 "非监督式学习")规则,它后来的变种是[长期增强作用](https://zh.wikipedia.org/wiki/%E9%95%B7%E6%9C%9F%E5%A2%9E%E5%BC%B7%E4%BD%9C%E7%94%A8 "长期增强作用")的早期模型。从1948年开始,研究人员将这种计算模型的思想应用到B型图灵机上。
法利和[韦斯利·A·克拉克](https://zh.wikipedia.org/w/index.php?title=%E9%9F%A6%E6%96%AF%E5%88%A9%C2%B7A%C2%B7%E5%85%8B%E6%8B%89%E5%85%8B&action=edit&redlink=1 "韦斯利·A·克拉克(页面不存在)")(1954)[[3]](https://zh.wikipedia.org/wiki/%E4%BA%BA%E5%B7%A5%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C#cite_note-3)首次使用计算机,当时称作计算器,在MIT模拟了一个赫布网络。
弗兰克·罗森布拉特(1956)[[4]](https://zh.wikipedia.org/wiki/%E4%BA%BA%E5%B7%A5%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C#cite_note-4)创造了感知机。这是一种模式识别算法,用简单的加减法实现了两层的计算机学习网络。罗森布拉特也用数学符号描述了基本感知机里没有的回路,例如异或回路。这种回路一直无法被神经网络处理,直到Paul Werbos(1975)创造了[反向传播算法](https://zh.wikipedia.org/wiki/%E5%8F%8D%E5%90%91%E4%BC%A0%E6%92%AD%E7%AE%97%E6%B3%95 "反向传播算法")。
在[马文·明斯基](https://zh.wikipedia.org/wiki/%E9%A9%AC%E6%96%87%C2%B7%E9%97%B5%E6%96%AF%E5%9F%BA "马文·闵斯基")和[西摩·帕尔特](https://zh.wikipedia.org/w/index.php?title=%E8%A5%BF%E6%91%A9%C2%B7%E5%B8%95%E5%B0%94%E7%89%B9&action=edit&redlink=1 "西摩·帕尔特(页面不存在)")(1969)发表了一项关于机器学习的研究以后,神经网络的研究停滞不前。他们发现了神经网络的两个关键问题。第一是基本感知机无法处理异或回路。第二个重要的问题是电脑没有足够的能力来处理大型神经网络所需要的很长的计算时间。直到计算机具有更强的计算能力之前,神经网络的研究进展缓慢。
### 反向传播算法与复兴[[编辑](https://zh.wikipedia.org/w/index.php?title=%E4%BA%BA%E5%B7%A5%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C&action=edit§ion=4 "编辑小节:反向传播算法与复兴")]
后来出现的一个关键的进展是[反向传播算法](https://zh.wikipedia.org/wiki/%E5%8F%8D%E5%90%91%E4%BC%A0%E6%92%AD%E7%AE%97%E6%B3%95 "反向传播算法")(Werbos 1975)。这个算法有效地解决了异或的问题,还有更普遍的训练多层神经网络的问题。
在二十世纪80年代中期,[分布式并行处理](https://zh.wikipedia.org/wiki/%E5%88%86%E5%B8%83%E5%BC%8F%E5%B9%B6%E8%A1%8C%E5%A4%84%E7%90%86 "分布式并行处理")(当时称作[联结主义](https://zh.wikipedia.org/wiki/%E8%81%94%E7%BB%93%E4%B8%BB%E4%B9%89 "联结主义"))流行起来。David E. Rumelhart和James McClelland(1986)的教材对于联结主义在计算机模拟神经活动中的应用提供了全面的论述。
神经网络传统上被认为是大脑中的神经活动的简化模型,虽然这个模型和大脑的生理结构之间的关联存在争议。人们不清楚人工神经网络能多大程度地反映大脑的功能。
[支持向量机](https://zh.wikipedia.org/wiki/%E6%94%AF%E6%8C%81%E5%90%91%E9%87%8F%E6%9C%BA "支持向量机")和其他更简单的方法(例如[线性分类器](https://zh.wikipedia.org/wiki/%E7%BA%BF%E6%80%A7%E5%88%86%E7%B1%BB%E5%99%A8 "线性分类器"))在机器学习领域的流行度逐渐超过了神经网络,但是在2000年代后期出现的[深度学习](https://zh.wikipedia.org/wiki/%E6%B7%B1%E5%BA%A6%E5%AD%A6%E4%B9%A0 "深度学习")重新激发了人们对神经网络的兴趣。
### 2006年之后的进展[[编辑](https://zh.wikipedia.org/w/index.php?title=%E4%BA%BA%E5%B7%A5%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C&action=edit§ion=5 "编辑小节:2006年之后的进展")]
人们用[CMOS](https://zh.wikipedia.org/wiki/CMOS "CMOS")创造了用于生物物理模拟和神经形态计算的计算装置。最新的研究显示了用于大型[主成分分析](https://zh.wikipedia.org/wiki/%E4%B8%BB%E6%88%90%E5%88%86%E5%88%86%E6%9E%90 "主成分分析")和[卷积神经网络](https://zh.wikipedia.org/wiki/%E5%8D%B7%E7%A7%AF%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C "卷积神经网络")的纳米装置[[5]](https://zh.wikipedia.org/wiki/%E4%BA%BA%E5%B7%A5%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C#cite_note-5)具有良好的前景。如果成功的话,这会创造出一种新的神经计算装置[[6]](https://zh.wikipedia.org/wiki/%E4%BA%BA%E5%B7%A5%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C#cite_note-6),因为它依赖于学习而不是编程,并且它从根本上就是[模拟](https://zh.wikipedia.org/wiki/%E6%A8%A1%E6%93%AC%E4%BF%A1%E8%99%9F "模拟信号")的而不是[数字化](https://zh.wikipedia.org/wiki/%E6%95%B0%E5%AD%97%E5%8C%96 "数字化")的,虽然它的第一个实例可能是数字化的CMOS装置。
在2009到2012年之间,Jürgen Schmidhuber在Swiss AI Lab IDSIA的研究小组研发的[递归神经网络](https://zh.wikipedia.org/wiki/%E9%80%92%E5%BD%92%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C "递归神经网络")和深前馈神经网络赢得了8项关于模式识别和机器学习的国际比赛。[[7]](https://zh.wikipedia.org/wiki/%E4%BA%BA%E5%B7%A5%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C#cite_note-7)[[8]](https://zh.wikipedia.org/wiki/%E4%BA%BA%E5%B7%A5%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C#cite_note-8)例如,Alex Graves et al.的双向、多维的LSTM赢得了2009年ICDAR的3项关于连笔字识别的比赛,而且之前并不知道关于将要学习的3种语言的信息。[[9]](https://zh.wikipedia.org/wiki/%E4%BA%BA%E5%B7%A5%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C#cite_note-9)[[10]](https://zh.wikipedia.org/wiki/%E4%BA%BA%E5%B7%A5%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C#cite_note-10)[[11]](https://zh.wikipedia.org/wiki/%E4%BA%BA%E5%B7%A5%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C#cite_note-11)[[12]](https://zh.wikipedia.org/wiki/%E4%BA%BA%E5%B7%A5%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C#cite_note-12)
IDSIA的Dan Ciresan和同事根据这个方法编写的基于GPU的实现赢得了多项模式识别的比赛,包括IJCNN 2011交通标志识别比赛等等。[[13]](https://zh.wikipedia.org/wiki/%E4%BA%BA%E5%B7%A5%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C#cite_note-13)[[14]](https://zh.wikipedia.org/wiki/%E4%BA%BA%E5%B7%A5%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C#cite_note-14)他们的神经网络也是第一个在重要的基准测试中(例如IJCNN 2012交通标志识别和NYU的[扬·勒丘恩](https://zh.wikipedia.org/wiki/%E6%89%AC%C2%B7%E5%8B%92%E4%B8%98%E6%81%A9 "扬·勒丘恩")(Yann LeCun)的MNIST手写数字问题)能达到或超过人类水平的人工模式识别器。
类似1980年Kunihiko Fukushima发明的neocognitron[[15]](https://zh.wikipedia.org/wiki/%E4%BA%BA%E5%B7%A5%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C#cite_note-K._Fukushima._Neocognitron_1980-15)和视觉标准结构[[16]](https://zh.wikipedia.org/wiki/%E4%BA%BA%E5%B7%A5%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C#cite_note-M_Riesenhuber.2C_1999-16)(由David H. Hubel和Torsten Wiesel在初级视皮层中发现的那些简单而又复杂的细胞启发)那样有深度的、高度非线性的神经结构可以被多伦多大学杰夫·辛顿实验室的非监督式学习方法所训练。[[17]](https://zh.wikipedia.org/wiki/%E4%BA%BA%E5%B7%A5%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C#cite_note-17)[[18]](https://zh.wikipedia.org/wiki/%E4%BA%BA%E5%B7%A5%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C#cite_note-18)[[19]](https://zh.wikipedia.org/wiki/%E4%BA%BA%E5%B7%A5%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C#cite_note-19)
## 神经元[[编辑](https://zh.wikipedia.org/w/index.php?title=%E4%BA%BA%E5%B7%A5%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C&action=edit§ion=6 "编辑小节:神经元")]
神经元示意图:
[![Ncell.png](https://upload.wikimedia.org/wikipedia/commons/9/97/Ncell.png)](https://zh.wikipedia.org/wiki/File:Ncell.png)
* a1~an为输入向量的各个分量
* w1~wn为神经元各个突触的权值
* b为偏置
* f为传递函数,通常为非线性函数。一般有traingd(),tansig(),hardlim()。以下默认为hardlim()
* t为神经元输出
数学表示 {\displaystyle t=f({\vec {W'}}{\vec {A}}+b)}![{\displaystyle t=f({\vec {W'}}{\vec {A}}+b)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/ee01fe927d862cbc18097ac30a320331e98f4173)
* {\displaystyle {\vec {W}}}![{\vec {W}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/3bdcba4e8339910f96bfc9a94170678158c1c143)为权向量 ,{\displaystyle {\vec {W'}}}![{\displaystyle {\vec {W'}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/cc508e4de092be6fe1fbe13e0677a5b5c2f5d9da)为{\displaystyle {\vec {W}}}![{\vec {W}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/3bdcba4e8339910f96bfc9a94170678158c1c143)的转置
* {\displaystyle {\vec {A}}}![{\vec {A}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/391292ffadc65b0cde3e96f23afcdb811619dd95)为输入向量
* {\displaystyle b}![b](https://wikimedia.org/api/rest_v1/media/math/render/svg/f11423fbb2e967f986e36804a8ae4271734917c3)为偏置
* {\displaystyle f}![f](https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61)为传递函数
可见,一个神经元的功能是求得输入向量与权向量的[内积](https://zh.wikipedia.org/wiki/%E5%86%85%E7%A7%AF "内积")后,经一个非线性传递函数得到一个[标量](https://zh.wikipedia.org/wiki/%E6%A0%87%E9%87%8F "标量")结果。
单个神经元的作用:把一个n维向量空间用一个超平面分区成两部分(称之为判断边界),给定一个输入向量,神经元可以判断出这个向量位于超平面的哪一边。
该超平面的方程:{\displaystyle {\vec {W'}}{\vec {p}}+b=0}![{\displaystyle {\vec {W'}}{\vec {p}}+b=0}](https://wikimedia.org/api/rest_v1/media/math/render/svg/a9c96911a26c7e6689001e0ad4a1c92cc678a63a)
* {\displaystyle {\vec {W}}}![{\vec {W}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/3bdcba4e8339910f96bfc9a94170678158c1c143)权向量
* {\displaystyle b}![b](https://wikimedia.org/api/rest_v1/media/math/render/svg/f11423fbb2e967f986e36804a8ae4271734917c3)偏置
* {\displaystyle {\vec {p}}}![{\vec {p}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/84fee53c81592db54e0fe6c6f9eba002bb1dc74b)超平面上的向量
[[20]](https://zh.wikipedia.org/wiki/%E4%BA%BA%E5%B7%A5%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C#cite_note-20)
## 神经元网络[[编辑](https://zh.wikipedia.org/w/index.php?title=%E4%BA%BA%E5%B7%A5%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C&action=edit§ion=7 "编辑小节:神经元网络")]
### 单层神经元网络[[编辑](https://zh.wikipedia.org/w/index.php?title=%E4%BA%BA%E5%B7%A5%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C&action=edit§ion=8 "编辑小节:单层神经元网络")]
是最基本的神经元网络形式,由有限个神经元构成,所有神经元的输入向量都是同一个向量。由于每一个神经元都会产生一个标量结果,所以单层神经元的输出是一个向量,向量的维数等于神经元的数目。
示意图:
[![SingleLayerNeuralNetwork english.png](https://upload.wikimedia.org/wikipedia/commons/a/a8/SingleLayerNeuralNetwork_english.png)](https://zh.wikipedia.org/wiki/File:SingleLayerNeuralNetwork_english.png)
### 多层神经元网络[[编辑](https://zh.wikipedia.org/w/index.php?title=%E4%BA%BA%E5%B7%A5%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C&action=edit§ion=9 "编辑小节:多层神经元网络")]
## 人工神经网络的实用性[[编辑](https://zh.wikipedia.org/w/index.php?title=%E4%BA%BA%E5%B7%A5%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C&action=edit§ion=10 "编辑小节:人工神经网络的实用性")]
人工神经网络是一个能够学习,能够总结归纳的系统,也就是说它能够通过已知数据的实验运用来学习和归纳总结。人工神经网络通过对局部情况的对照比较(而这些比较是基于不同情况下的自动学习和要实际解决问题的复杂性所决定的),它能够推理产生一个可以自动识别的系统。与之不同的基于符号系统下的学习方法,它们也具有推理功能,只是它们是创建在逻辑算法的基础上,也就是说它们之所以能够推理,基础是需要有一个推理算法则的集合。
## 人工神经元网络模型[[编辑](https://zh.wikipedia.org/w/index.php?title=%E4%BA%BA%E5%B7%A5%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C&action=edit§ion=11 "编辑小节:人工神经元网络模型")]
通常来说,一个人工神经元网络是由一个多层神经元结构组成,每一层神经元拥有输入(它的输入是前一层神经元的输出)和输出,每一层(我们用符号记做)Layer(i)是由Ni(Ni代表在第i层上的N)个网络神经元组成,每个Ni上的网络神经元把对应在Ni-1上的神经元输出做为它的输入,我们把神经元和与之对应的神经元之间的连线用生物学的名称,叫做**突触**(英语:Synapse),在数学模型中每个突触有一个加权数值,我们称做权重,那么要计算第i层上的某个神经元所得到的势能等于每一个权重乘以第i-1层上对应的神经元的输出,然后全体求和得到了第i层上的某个神经元所得到的势能,然后势能数值通过该神经元上的激活函数(activation function,常是∑函数(英语:Sigmoid function)以控制输出大小,因为其可微分且连续,方便差量规则(英语:Delta rule)处理。求出该神经元的输出,注意的是该输出是一个非线性的数值,也就是说通过激励函数求的数值根据极限值来判断是否要激活该神经元,换句话说我们对一个神经元网络的输出是否线性不感兴趣。
## 基本结构[[编辑](https://zh.wikipedia.org/w/index.php?title=%E4%BA%BA%E5%B7%A5%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C&action=edit§ion=12 "编辑小节:基本结构")]
一种常见的多层结构的前馈网络(Multilayer Feedforward Network)由三部分组成,
* 输入层(Input layer),众多神经元(Neuron)接受大量非线形输入消息。输入的消息称为输入向量。
* 输出层(Output layer),消息在神经元链接中传输、分析、权衡,形成输出结果。输出的消息称为输出向量。
* 隐藏层(Hidden layer),简称“隐层”,是输入层和输出层之间众多神经元和链接组成的各个层面。隐层可以有多层,习惯上会用一层。隐层的节点(神经元)数目不定,但数目越多神经网络的非线性越显著,从而神经网络的[强健性(robustness)](https://zh.wikipedia.org/w/index.php?title=%E5%BC%B7%E5%81%A5%E6%80%A7%EF%BC%88robustness%EF%BC%89&action=edit&redlink=1 "强健性(robustness)(页面不存在)")(控制系统在一定结构、大小等的参数摄动下,维持某些性能的特性。)更显著。习惯上会选输入节点1.2至1.5倍的节点。
神经网络的类型已经演变出很多种,这种分层的结构也并不是对所有的神经网络都适用。
## 学习过程[[编辑](https://zh.wikipedia.org/w/index.php?title=%E4%BA%BA%E5%B7%A5%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C&action=edit§ion=13 "编辑小节:学习过程")]
通过训练样本的校正,对各个层的权重进行校正(learning)而创建模型的过程,称为自动学习过程(training algorithm)。具体的学习方法则因网络结构和模型不同而不同,常用[反向传播算法](https://zh.wikipedia.org/wiki/%E5%8F%8D%E5%90%91%E4%BC%A0%E6%92%AD%E7%AE%97%E6%B3%95 "反向传播算法")(Backpropagation/倒传递/逆传播,以output利用一次微分[Delta rule](https://zh.wikipedia.org/w/index.php?title=Delta_rule&action=edit&redlink=1)来修正weight)来验证。
参见:[神经网络介绍](http://www.ibm.com/developerworks/cn/linux/other/l-neural/index.html)
## 种类[[编辑](https://zh.wikipedia.org/w/index.php?title=%E4%BA%BA%E5%B7%A5%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C&action=edit§ion=14 "编辑小节:种类")]
人工神经网络分类为以下两种:
1.依学习策略(Algorithm)分类主要有:
* [监督式学习网络](https://zh.wikipedia.org/wiki/%E7%9B%A3%E7%9D%A3%E5%BC%8F%E5%AD%B8%E7%BF%92%E7%B6%B2%E8%B7%AF "监督式学习网络")(Supervised Learning Network)为主
* [无监督式学习网络](https://zh.wikipedia.org/wiki/%E7%84%A1%E7%9B%A3%E7%9D%A3%E5%BC%8F%E5%AD%B8%E7%BF%92%E7%B6%B2%E8%B7%AF "无监督式学习网络")(Unsupervised Learning Network)
* [混合式学习网络](https://zh.wikipedia.org/w/index.php?title=%E6%B7%B7%E5%90%88%E5%BC%8F%E5%AD%B8%E7%BF%92%E7%B6%B2%E8%B7%AF&action=edit&redlink=1 "混合式学习网络(页面不存在)")(Hybrid Learning Network)
* [联想式学习网络](https://zh.wikipedia.org/w/index.php?title=%E8%81%AF%E6%83%B3%E5%BC%8F%E5%AD%B8%E7%BF%92%E7%B6%B2%E8%B7%AF&action=edit&redlink=1 "联想式学习网络(页面不存在)")(Associate Learning Network)
* [最适化学习网络](https://zh.wikipedia.org/w/index.php?title=%E6%9C%80%E9%81%A9%E5%8C%96%E5%AD%B8%E7%BF%92%E7%B6%B2%E8%B7%AF&action=edit&redlink=1 "最适化学习网络(页面不存在)")(Optimization Application Network)
2.依网络架构(Connectionism)分类主要有:
* [前向式架构](https://zh.wikipedia.org/w/index.php?title=%E5%89%8D%E5%90%91%E5%BC%8F%E6%9E%B6%E6%A7%8B&action=edit&redlink=1 "前向式架构(页面不存在)")(Feed Forward Network)
* [回馈式架构](https://zh.wikipedia.org/w/index.php?title=%E5%9B%9E%E9%A5%8B%E5%BC%8F%E6%9E%B6%E6%A7%8B&action=edit&redlink=1 "回馈式架构(页面不存在)")(Recurrent Network)
* [强化式架构](https://zh.wikipedia.org/w/index.php?title=%E5%BC%BA%E5%8C%96%E5%BC%8F%E6%9E%B6%E6%A7%8B&action=edit&redlink=1 "强化式架构(页面不存在)")(Reinforcement Network)
## 理论性质[[编辑](https://zh.wikipedia.org/w/index.php?title=%E4%BA%BA%E5%B7%A5%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C&action=edit§ion=15 "编辑小节:理论性质")]
### 计算能力[[编辑](https://zh.wikipedia.org/w/index.php?title=%E4%BA%BA%E5%B7%A5%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C&action=edit§ion=16 "编辑小节:计算能力")]
多层感知器(MLP)是一个通用的函数逼近器,由Cybenko定理证明。然而,证明不是由所要求的神经元数量或权重来推断的。 Hava Siegelmann和Eduardo D. Sontag的工作证明了,一个具有有理数权重值的特定递归结构(与全精度实数权重值相对应)相当于一个具有有限数量的神经元和标准的线性关系的通用图灵机。[[21]](https://zh.wikipedia.org/wiki/%E4%BA%BA%E5%B7%A5%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C#cite_note-21) 他们进一步表明,使用无理数权重值会产生一个超图灵机。
### 容量[[编辑](https://zh.wikipedia.org/w/index.php?title=%E4%BA%BA%E5%B7%A5%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C&action=edit§ion=17 "编辑小节:容量")]
人工神经网络模型有一个属性,称为“容量”,这大致相当于他们可以塑造任何函数的能力。它与可以被储存在网络中的信息的数量和复杂性相关。
### 收敛性[[编辑](https://zh.wikipedia.org/w/index.php?title=%E4%BA%BA%E5%B7%A5%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C&action=edit§ion=18 "编辑小节:收敛性")]
没有什么通常意义上的收敛,因为它取决于一些因素。首先,函数可能存在许多局部极小值。这取决于成本函数和模型。其次,使用优化方法在远离局部最小值时可能无法保证收敛。第三,对大量的数据或参数,一些方法变得不切实际。在一般情况下,我们发现,理论保证的收敛不能成为实际应用的一个可靠的指南。
### 综合统计[[编辑](https://zh.wikipedia.org/w/index.php?title=%E4%BA%BA%E5%B7%A5%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C&action=edit§ion=19 "编辑小节:综合统计")]
在目标是创建一个普遍系统的应用程序中,过度训练的问题出现了。这出现在回旋或过度具体的系统中当网络的容量大大超过所需的自由参数。为了避免这个问题,有两个方向:第一个是使用交叉验证和类似的技术来检查过度训练的存在和选择最佳参数如最小化泛化误差。二是使用某种形式的正规化。这是一个在概率化(贝叶斯)框架里出现的概念,其中的正则化可以通过为简单模型选择一个较大的先验概率模型进行;而且在统计学习理论中,其目的是最大限度地减少了两个数量:“风险”和“结构风险”,相当于误差在训练集和由于过度拟合造成的预测误差。
## 参见[[编辑](https://zh.wikipedia.org/w/index.php?title=%E4%BA%BA%E5%B7%A5%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C&action=edit§ion=20 "编辑小节:参见")]
* [生物神经网络](https://zh.wikipedia.org/wiki/%E7%94%9F%E7%89%A9%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C "生物神经网络")
* [人工智能](https://zh.wikipedia.org/wiki/%E4%BA%BA%E5%B7%A5%E6%99%BA%E8%83%BD "人工智能")
* [机器学习](https://zh.wikipedia.org/wiki/%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0 "机器学习")
* [感知机](https://zh.wikipedia.org/wiki/%E6%84%9F%E7%9F%A5%E6%9C%BA "感知机")
## 外部链接[[编辑](https://zh.wikipedia.org/w/index.php?title=%E4%BA%BA%E5%B7%A5%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C&action=edit§ion=21 "编辑小节:外部链接")]
* [Performance comparison of neural network algorithms tested on UCI data sets](http://tunedit.org/results?e=&d=UCI%2F&a=neural+rbf+perceptron&n=)
* [A close view to Artificial Neural Networks Algorithms](http://www.learnartificialneuralnetworks.com/)
* [开放式目录计划](https://zh.wikipedia.org/wiki/%E5%BC%80%E6%94%BE%E5%BC%8F%E7%9B%AE%E5%BD%95 "开放式目录")中和[Neural Networks](http://dmoztools.net/Computers/Artificial_Intelligence/Neural_Networks)相关的内容
* [A Brief Introduction to Neural Networks (D. Kriesel)](http://www.dkriesel.com/en/science/neural_networks) - Illustrated, bilingual manuscript about artificial neural networks; Topics so far: Perceptrons, Backpropagation, Radial Basis Functions, Recurrent Neural Networks, Self Organizing Maps, Hopfield Networks.
* [Neural Networks in Materials Science](http://www.msm.cam.ac.uk/phase-trans/abstracts/neural.review.html)
* [A practical tutorial on Neural Networks](http://www.ai-junkie.com/ann/evolved/nnt1.html)
* [Applications of neural networks](http://www.peltarion.com/doc/index.php?title=Applications_of_adaptive_systems)
* [XOR 实例](http://4rdp.blogspot.tw/2013/10/artificial-neural-network.html)
## 参考文献[[编辑](https://zh.wikipedia.org/w/index.php?title=%E4%BA%BA%E5%B7%A5%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C&action=edit§ion=22 "编辑小节:参考文献")]
1. **[跳转^](https://zh.wikipedia.org/wiki/%E4%BA%BA%E5%B7%A5%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C#cite_ref-1)** Hentrich, Michael William. [Methodology and Coronary Artery Disease Cure](https://www.researchgate.net/publication/281017979_Methodology_and_Coronary_Artery_Disease_Cure). 2015-08-16. [doi:10.1709/TIT.2015.1083925](https://dx.doi.org/10.1709%2FTIT.2015.1083925).
2. **[跳转^](https://zh.wikipedia.org/wiki/%E4%BA%BA%E5%B7%A5%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C#cite_ref-2)** McCulloch, Warren S.; Pitts, Walter. [A logical calculus of the ideas immanent in nervous activity](http://link.springer.com/article/10.1007/BF02478259). The bulletin of mathematical biophysics. 1943-12-01, **5** (4): 115–133. [ISSN 0007-4985](https://www.worldcat.org/issn/0007-4985). [doi:10.1007/BF02478259](https://dx.doi.org/10.1007%2FBF02478259) (英语).
3. **[跳转^](https://zh.wikipedia.org/wiki/%E4%BA%BA%E5%B7%A5%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C#cite_ref-3)** Farley, B.; Clark, W. [Simulation of self-organizing systems by digital computer](http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1057468). Transactions of the IRE Professional Group on Information Theory. 1954-09-01, **4** (4): 76–84. [ISSN 2168-2690](https://www.worldcat.org/issn/2168-2690). [doi:10.1109/TIT.1954.1057468](https://dx.doi.org/10.1109%2FTIT.1954.1057468).
4. **[跳转^](https://zh.wikipedia.org/wiki/%E4%BA%BA%E5%B7%A5%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C#cite_ref-4)** Rochester, N.; Holland, J.; Haibt, L.; Duda, W. [Tests on a cell assembly theory of the action of the brain, using a large digital computer](http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1056810). IRE Transactions on Information Theory. 1956-09-01, **2** (3): 80–93. [ISSN 0096-1000](https://www.worldcat.org/issn/0096-1000). [doi:10.1109/TIT.1956.1056810](https://dx.doi.org/10.1109%2FTIT.1956.1056810).
5. **[跳转^](https://zh.wikipedia.org/wiki/%E4%BA%BA%E5%B7%A5%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C#cite_ref-5)** Yang, J. J.; Pickett, M. D.; Li, X. M.; Ohlberg, D. A. A.; Stewart, D. R.; Williams, R. S. Memristive switching mechanism for metal/oxide/metal nanodevices. Nat. Nanotechnol. 2008, **3**: 429–433. [doi:10.1038/nnano.2008.160](https://dx.doi.org/10.1038%2Fnnano.2008.160).
6. **[跳转^](https://zh.wikipedia.org/wiki/%E4%BA%BA%E5%B7%A5%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C#cite_ref-6)** Strukov, D. B.; Snider, G. S.; Stewart, D. R.; Williams, R. S. The missing memristor found. Nature. 2008, **453**: 80–83. [PMID 18451858](https://www.ncbi.nlm.nih.gov/pubmed/18451858). [doi:10.1038/nature06932](https://dx.doi.org/10.1038%2Fnature06932).
7. **[跳转^](https://zh.wikipedia.org/wiki/%E4%BA%BA%E5%B7%A5%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C#cite_ref-7)** [2012 Kurzweil AI Interview](http://www.kurzweilai.net/how-bio-inspired-deep-learning-keeps-winning-competitions) with [Jürgen Schmidhuber](https://zh.wikipedia.org/w/index.php?title=J%C3%BCrgen_Schmidhuber&action=edit&redlink=1 "Jürgen Schmidhuber(页面不存在)") on the eight competitions won by his Deep Learning team 2009–2012
8. **[跳转^](https://zh.wikipedia.org/wiki/%E4%BA%BA%E5%B7%A5%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C#cite_ref-8)** [http://www.kurzweilai.net/how-bio-inspired-deep-learning-keeps-winning-competitions](http://www.kurzweilai.net/how-bio-inspired-deep-learning-keeps-winning-competitions) 2012 Kurzweil AI Interview with [Jürgen Schmidhuber](https://zh.wikipedia.org/w/index.php?title=J%C3%BCrgen_Schmidhuber&action=edit&redlink=1 "Jürgen Schmidhuber(页面不存在)") on the eight competitions won by his Deep Learning team 2009–2012
9. **[跳转^](https://zh.wikipedia.org/wiki/%E4%BA%BA%E5%B7%A5%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C#cite_ref-9)** Graves, Alex; and Schmidhuber, Jürgen; *[Offline Handwriting Recognition with Multidimensional Recurrent Neural Networks](http://www.idsia.ch/~juergen/nips2009.pdf)*, in Bengio, Yoshua; Schuurmans, Dale; Lafferty, John; Williams, Chris K. I.; and Culotta, Aron (eds.), *Advances in Neural Information Processing Systems 22 (NIPS'22), 7–10 December 2009, Vancouver, BC*, Neural Information Processing Systems (NIPS) Foundation, 2009, pp. 545–552.
10. **[跳转^](https://zh.wikipedia.org/wiki/%E4%BA%BA%E5%B7%A5%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C#cite_ref-10)** Graves, A.; Liwicki, M.; Fernandez, S.; Bertolami, R.; Bunke, H.; [Schmidhuber, J.](https://zh.wikipedia.org/w/index.php?title=J%C3%BCrgen_Schmidhuber&action=edit&redlink=1 "Jürgen Schmidhuber(页面不存在)") [A Novel Connectionist System for Improved Unconstrained Handwriting Recognition](http://www.idsia.ch/~juergen/tpami_2008.pdf) (PDF). IEEE Transactions on Pattern Analysis and Machine Intelligence. 2009, **31** (5).
11. **[跳转^](https://zh.wikipedia.org/wiki/%E4%BA%BA%E5%B7%A5%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C#cite_ref-11)** Graves, Alex; and Schmidhuber, Jürgen; *Offline Handwriting Recognition with Multidimensional Recurrent Neural Networks*, in Bengio, Yoshua; Schuurmans, Dale; Lafferty, John; Williams, Chris K. I.; and Culotta, Aron (eds.), *Advances in Neural Information Processing Systems 22 (NIPS'22), December 7th–10th, 2009, Vancouver, BC*, Neural Information Processing Systems (NIPS) Foundation, 2009, pp. 545–552
12. **[跳转^](https://zh.wikipedia.org/wiki/%E4%BA%BA%E5%B7%A5%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C#cite_ref-12)** Graves, A.; Liwicki, M.; Fernandez, S.; Bertolami, R.; Bunke, H.; Schmidhuber, J. A Novel Connectionist System for Improved Unconstrained Handwriting Recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2009, **31** (5).
13. **[跳转^](https://zh.wikipedia.org/wiki/%E4%BA%BA%E5%B7%A5%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C#cite_ref-13)** D. C. Ciresan, U. Meier, J. Masci, [J. Schmidhuber](https://zh.wikipedia.org/w/index.php?title=J%C3%BCrgen_Schmidhuber&action=edit&redlink=1 "Jürgen Schmidhuber(页面不存在)"). Multi-Column Deep Neural Network for Traffic Sign Classification. Neural Networks, 2012.
14. **[跳转^](https://zh.wikipedia.org/wiki/%E4%BA%BA%E5%B7%A5%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C#cite_ref-14)** D. C. Ciresan, U. Meier, J. Masci, J. Schmidhuber. Multi-Column Deep Neural Network for Traffic Sign Classification. Neural Networks, 2012.
15. **[跳转^](https://zh.wikipedia.org/wiki/%E4%BA%BA%E5%B7%A5%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C#cite_ref-K._Fukushima._Neocognitron_1980_15-0)** Fukushima, K. Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biological Cybernetics. 1980, **36** (4): 93–202. [PMID 7370364](https://www.ncbi.nlm.nih.gov/pubmed/7370364). [doi:10.1007/BF00344251](https://dx.doi.org/10.1007%2FBF00344251).
16. **[跳转^](https://zh.wikipedia.org/wiki/%E4%BA%BA%E5%B7%A5%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C#cite_ref-M_Riesenhuber.2C_1999_16-0)** M Riesenhuber, [T Poggio](https://zh.wikipedia.org/w/index.php?title=Tomaso_Poggio&action=edit&redlink=1 "Tomaso Poggio(页面不存在)"). Hierarchical models of object recognition in cortex. Nature neuroscience, 1999.
17. **[跳转^](https://zh.wikipedia.org/wiki/%E4%BA%BA%E5%B7%A5%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C#cite_ref-17)** [Deep belief networks](http://www.scholarpedia.org/article/Deep_belief_networks) at Scholarpedia.
18. **[跳转^](https://zh.wikipedia.org/wiki/%E4%BA%BA%E5%B7%A5%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C#cite_ref-18)** [Hinton, G. E.](https://zh.wikipedia.org/w/index.php?title=Geoff_Hinton&action=edit&redlink=1 "Geoff Hinton(页面不存在)"); Osindero, S.; Teh, Y. W. [A Fast Learning Algorithm for Deep Belief Nets](http://www.cs.toronto.edu/~hinton/absps/fastnc.pdf) (PDF). [Neural Computation](https://zh.wikipedia.org/w/index.php?title=Neural_Computation_(journal)&action=edit&redlink=1 "Neural Computation (journal)(页面不存在)"). 2006, **18** (7): 1527–1554. [PMID 16764513](https://www.ncbi.nlm.nih.gov/pubmed/16764513). [doi:10.1162/neco.2006.18.7.1527](https://dx.doi.org/10.1162%2Fneco.2006.18.7.1527).
19. **[跳转^](https://zh.wikipedia.org/wiki/%E4%BA%BA%E5%B7%A5%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C#cite_ref-19)** [Hinton, G. E.](https://zh.wikipedia.org/w/index.php?title=Geoffrey_Hinton&action=edit&redlink=1 "Geoffrey Hinton(页面不存在)"); Osindero, S.; Teh, Y. [A fast learning algorithm for deep belief nets](http://www.cs.toronto.edu/~hinton/absps/fastnc.pdf) (PDF). [Neural Computation](https://zh.wikipedia.org/w/index.php?title=Neural_Computation_(journal)&action=edit&redlink=1 "Neural Computation (journal)(页面不存在)"). 2006, **18** (7): 1527–1554. [PMID 16764513](https://www.ncbi.nlm.nih.gov/pubmed/16764513). [doi:10.1162/neco.2006.18.7.1527](https://dx.doi.org/10.1162%2Fneco.2006.18.7.1527).
20. **[跳转^](https://zh.wikipedia.org/wiki/%E4%BA%BA%E5%B7%A5%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C#cite_ref-20)** Hagan, Martin. Neural Network Design. PWS Publishing Company. 1996. [ISBN 7-111-10841-8](https://zh.wikipedia.org/wiki/Special:%E7%BD%91%E7%BB%9C%E4%B9%A6%E6%BA%90/7-111-10841-8 "Special:网络书源/7-111-10841-8").
21. **[跳转^](https://zh.wikipedia.org/wiki/%E4%BA%BA%E5%B7%A5%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C#cite_ref-21)** Siegelmann, H.T.; Sontag, E.D. [Turing computability with neural nets](http://www.math.rutgers.edu/~sontag/FTP_DIR/aml-turing.pdf) (PDF). Appl. Math. Lett. 1991, **4** (6): 77–80. [doi:10.1016/0893-9659(91)90080-F](https://dx.doi.org/10.1016%2F0893-9659%2891%2990080-F).
- 15张图阅尽人工智能现状
- LeCun台大演讲:AI最大缺陷是缺乏常识,无监督学习突破困境
- Google首席科学家谈Google是怎么做深度学习的
- 为你的深度学习任务挑选性价比最高GPU
- 史上最全面的深度学习硬件指南
- 机器学习
- 普通程序员如何向人工智能靠拢?
- 从机器学习谈起
- 普通程序员如何转向AI方向
- 机器学习6大算法,优势劣势全解析
- 除了 Python ,这些语言写的机器学习项目也很牛(二)
- 五个鲜为人知,但又不可不知的机器学习开源项目
- 机器学习入门算法:从线性模型到神经网络
- 机器学习常见算法分类汇总
- 最实用的机器学习算法Top5
- NLP
- Lucene的原理和应用
- 理解和使用自然语言处理之终极指南(Python编码)(经典收藏版12k字,附数据简化筹技术人员)
- 神经网络
- 曾经历过两次低谷的人工神经网络,还会迎来下一个低谷么?
- 人工神经网络——维基
- 深度学习——维基
- A Neural Network in 11 lines of Python (Part 1)
- 深度学习
- 基于深度学习的机器翻译
- 谷歌研究员2万字批驳上海交大用深度学习推断犯罪分子
- 理解这25个概念,你的「深度学习」才算入门!
- Deep Learning(深度学习)学习笔记整理系列
- 概述、背景、人脑视觉机理
- 特征
- Deep Learning
- Deep Learning 训练
- Deep Learning(中文)
- 第1章 引言
- 深度学习如何入门?——知乎
- 文章收录
- 神经系统