[如何合理地估算线程池大小?](http://ifeve.com/how-to-calculate-threadpool-size/)
感谢网友【[蒋小强](http://weibo.com/u/1761654130)】投稿。
**如何合理地估算线程池大小?**
这个问题虽然看起来很小,却并不那么容易回答。大家如果有更好的方法欢迎赐教,先来一个天真的估算方法:假设要求一个系统的TPS(Transaction Per Second或者Task Per Second)至少为20,然后假设每个Transaction由一个线程完成,继续假设平均每个线程处理一个Transaction的时间为4s。那么问题转化为:
**如何设计线程池大小,使得可以在1s内处理完20个Transaction?**
计算过程很简单,每个线程的处理能力为0.25TPS,那么要达到20TPS,显然需要20/0.25=80个线程。
很显然这个估算方法很天真,因为它没有考虑到CPU数目。一般服务器的CPU核数为16或者32,如果有80个线程,那么肯定会带来太多不必要的线程上下文切换开销。
再来第二种简单的但不知是否可行的方法(N为CPU总核数):
* 如果是CPU密集型应用,则线程池大小设置为N+1
* 如果是IO密集型应用,则线程池大小设置为2N+1
如果一台服务器上只部署这一个应用并且只有这一个线程池,那么这种估算或许合理,具体还需自行测试验证。
接下来在这个文档:服务器性能IO优化 中发现一个估算公式:
| `1` | `最佳线程数目 = ((线程等待时间+线程CPU时间)/线程CPU时间 )* CPU数目` |
比如平均每个线程CPU运行时间为0.5s,而线程等待时间(非CPU运行时间,比如IO)为1.5s,CPU核心数为8,那么根据上面这个公式估算得到:((0.5+1.5)/0.5)*8=32。这个公式进一步转化为:
| `1` | `最佳线程数目 = (线程等待时间与线程CPU时间之比 + 1)* CPU数目` |
可以得出一个结论:
**线程等待时间所占比例越高,需要越多线程。线程CPU时间所占比例越高,需要越少线程。**
上一种估算方法也和这个结论相合。
一个系统最快的部分是CPU,所以决定一个系统吞吐量上限的是CPU。增强CPU处理能力,可以提高系统吞吐量上限。但根据短板效应,真实的系统吞吐量并不能单纯根据CPU来计算。那要提高系统吞吐量,就需要从“系统短板”(比如网络延迟、IO)着手:
* 尽量提高短板操作的并行化比率,比如多线程下载技术
* 增强短板能力,比如用NIO替代IO
第一条可以联系到Amdahl定律,这条定律定义了串行系统并行化后的加速比计算公式:
| `1` | `加速比=优化前系统耗时 / 优化后系统耗时` |
加速比越大,表明系统并行化的优化效果越好。Addahl定律还给出了系统并行度、CPU数目和加速比的关系,加速比为Speedup,系统串行化比率(指串行执行代码所占比率)为F,CPU数目为N:
| `1` | `Speedup <= ``1` `/ (F + (``1``-F)/N)` |
当N足够大时,串行化比率F越小,加速比Speedup越大。
写到这里,我突然冒出一个问题。
**是否使用线程池就一定比使用单线程高效呢?**
答案是否定的,比如Redis就是单线程的,但它却非常高效,基本操作都能达到十万量级/s。从线程这个角度来看,部分原因在于:
* 多线程带来线程上下文切换开销,单线程就没有这种开销
* 锁
当然“Redis很快”更本质的原因在于:Redis基本都是内存操作,这种情况下单线程可以很高效地利用CPU。而多线程适用场景一般是:存在相当比例的IO和网络操作。
所以即使有上面的简单估算方法,也许看似合理,但实际上也未必合理,都需要结合系统真实情况(比如是IO密集型或者是CPU密集型或者是纯内存操作)和硬件环境(CPU、内存、硬盘读写速度、网络状况等)来不断尝试达到一个符合实际的合理估算值。
最后来一个“Dark Magic”估算方法(因为我暂时还没有搞懂它的原理),使用下面的类:
| `001` | `package` `pool_size_calculate;` |
| `002` | |
| `003` | `import` `java.math.BigDecimal;` |
| `004` | `import` `java.math.RoundingMode;` |
| `005` | `import` `java.util.Timer;` |
| `006` | `import` `java.util.TimerTask;` |
| `007` | `import` `java.util.concurrent.BlockingQueue;` |
| `008` | |
| `009` | `/**` |
| `010` | `* A class that calculates the optimal thread pool boundaries. It takes the` |
| `011` | `* desired target utilization and the desired work queue memory consumption as` |
| `012` | `* input and retuns thread count and work queue capacity.` |
| `013` | `*` |
| `014` | `* @author Niklas Schlimm` |
| `015` | `*` |
| `016` | `*/` |
| `017` | `public` `abstract` `class` `PoolSizeCalculator {` |
| `018` | |
| `019` | `/**` |
| `020` | `* The sample queue size to calculate the size of a single {@link Runnable}` |
| `021` | `* element.` |
| `022` | `*/` |
| `023` | `private` `final` `int` `SAMPLE_QUEUE_SIZE = ``1000``;` |
| `024` | |
| `025` | `/**` |
| `026` | `* Accuracy of test run. It must finish within 20ms of the testTime` |
| `027` | `* otherwise we retry the test. This could be configurable.` |
| `028` | `*/` |
| `029` | `private` `final` `int` `EPSYLON = ``20``;` |
| `030` | |
| `031` | `/**` |
| `032` | `* Control variable for the CPU time investigation.` |
| `033` | `*/` |
| `034` | `private` `volatile` `boolean` `expired;` |
| `035` | |
| `036` | `/**` |
| `037` | `* Time (millis) of the test run in the CPU time calculation.` |
| `038` | `*/` |
| `039` | `private` `final` `long` `testtime = ``3000``;` |
| `040` | |
| `041` | `/**` |
| `042` | `* Calculates the boundaries of a thread pool for a given {@link Runnable}.` |
| `043` | `*` |
| `044` | `* @param targetUtilization` |
| `045` | `* the desired utilization of the CPUs (0 <= targetUtilization <= * 1) * @param targetQueueSizeBytes * the desired maximum work queue size of the thread pool (bytes) */` `protected` `void` `calculateBoundaries(BigDecimal targetUtilization, BigDecimal targetQueueSizeBytes) { calculateOptimalCapacity(targetQueueSizeBytes); Runnable task = creatTask(); start(task); start(task); ``// warm up phase long cputime = getCurrentThreadCPUTime(); start(task); // test intervall cputime = getCurrentThreadCPUTime() - cputime; long waittime = (testtime * 1000000) - cputime; calculateOptimalThreadCount(cputime, waittime, targetUtilization); } private void calculateOptimalCapacity(BigDecimal targetQueueSizeBytes) { long mem = calculateMemoryUsage(); BigDecimal queueCapacity = targetQueueSizeBytes.divide(new BigDecimal( mem), RoundingMode.HALF_UP); System.out.println("Target queue memory usage (bytes): " + targetQueueSizeBytes); System.out.println("createTask() produced " + creatTask().getClass().getName() + " which took " + mem + " bytes in a queue"); System.out.println("Formula: " + targetQueueSizeBytes + " / " + mem); System.out.println("* Recommended queue capacity (bytes): " + queueCapacity); } /** * Brian Goetz' optimal thread count formula, see 'Java Concurrency in * Practice' (chapter 8.2) * * @param cpu * cpu time consumed by considered task * @param wait * wait time of considered task * @param targetUtilization * target utilization of the system */ private void calculateOptimalThreadCount(long cpu, long wait, BigDecimal targetUtilization) { BigDecimal waitTime = new BigDecimal(wait); BigDecimal computeTime = new BigDecimal(cpu); BigDecimal numberOfCPU = new BigDecimal(Runtime.getRuntime() .availableProcessors()); BigDecimal optimalthreadcount = numberOfCPU.multiply(targetUtilization) .multiply( new BigDecimal(1).add(waitTime.divide(computeTime, RoundingMode.HALF_UP))); System.out.println("Number of CPU: " + numberOfCPU); System.out.println("Target utilization: " + targetUtilization); System.out.println("Elapsed time (nanos): " + (testtime * 1000000)); System.out.println("Compute time (nanos): " + cpu); System.out.println("Wait time (nanos): " + wait); System.out.println("Formula: " + numberOfCPU + " * " + targetUtilization + " * (1 + " + waitTime + " / " + computeTime + ")"); System.out.println("* Optimal thread count: " + optimalthreadcount); } /** * Runs the {@link Runnable} over a period defined in {@link #testtime}. * Based on Heinz Kabbutz' ideas * ([http://www.javaspecialists.eu/archive/Issue124.html](http://www.javaspecialists.eu/archive/Issue124.html)). * * @param task * the runnable under investigation */ public void start(Runnable task) { long start = 0; int runs = 0; do { if (++runs > 5) {` |
| `046` | `throw` `new` `IllegalStateException(``"Test not accurate"``);` |
| `047` | `}` |
| `048` | `expired = ``false``;` |
| `049` | `start = System.currentTimeMillis();` |
| `050` | `Timer timer = ``new` `Timer();` |
| `051` | `timer.schedule(``new` `TimerTask() {` |
| `052` | `public` `void` `run() {` |
| `053` | `expired = ``true``;` |
| `054` | `}` |
| `055` | `}, testtime);` |
| `056` | `while` `(!expired) {` |
| `057` | `task.run();` |
| `058` | `}` |
| `059` | `start = System.currentTimeMillis() - start;` |
| `060` | `timer.cancel();` |
| `061` | `} ``while` `(Math.abs(start - testtime) > EPSYLON);` |
| `062` | `collectGarbage(``3``);` |
| `063` | `}` |
| `064` | |
| `065` | `private` `void` `collectGarbage(``int` `times) {` |
| `066` | `for` `(``int` `i = ``0``; i < times; i++) {` |
| `067` | `System.gc();` |
| `068` | `try` `{` |
| `069` | `Thread.sleep(``10``);` |
| `070` | `} ``catch` `(InterruptedException e) {` |
| `071` | `Thread.currentThread().interrupt();` |
| `072` | `break``;` |
| `073` | `}` |
| `074` | `}` |
| `075` | `}` |
| `076` | |
| `077` | `/**` |
| `078` | `* Calculates the memory usage of a single element in a work queue. Based on` |
| `079` | `* Heinz Kabbutz' ideas` |
| `080` | `* ([http://www.javaspecialists.eu/archive/Issue029.html](http://www.javaspecialists.eu/archive/Issue029.html)).` |
| `081` | `*` |
| `082` | `* @return memory usage of a single {@link Runnable} element in the thread` |
| `083` | `* pools work queue` |
| `084` | `*/` |
| `085` | `public` `long` `calculateMemoryUsage() {` |
| `086` | `BlockingQueue queue = createWorkQueue();` |
| `087` | `for` `(``int` `i = ``0``; i < SAMPLE_QUEUE_SIZE; i++) {` |
| `088` | `queue.add(creatTask());` |
| `089` | `}` |
| `090` | `long` `mem0 = Runtime.getRuntime().totalMemory()` |
| `091` | `- Runtime.getRuntime().freeMemory();` |
| `092` | `long` `mem1 = Runtime.getRuntime().totalMemory()` |
| `093` | `- Runtime.getRuntime().freeMemory();` |
| `094` | `queue = ``null``;` |
| `095` | `collectGarbage(``15``);` |
| `096` | `mem0 = Runtime.getRuntime().totalMemory()` |
| `097` | `- Runtime.getRuntime().freeMemory();` |
| `098` | `queue = createWorkQueue();` |
| `099` | `for` `(``int` `i = ``0``; i < SAMPLE_QUEUE_SIZE; i++) {` |
| `100` | `queue.add(creatTask());` |
| `101` | `}` |
| `102` | `collectGarbage(``15``);` |
| `103` | `mem1 = Runtime.getRuntime().totalMemory()` |
| `104` | `- Runtime.getRuntime().freeMemory();` |
| `105` | `return` `(mem1 - mem0) / SAMPLE_QUEUE_SIZE;` |
| `106` | `}` |
| `107` | |
| `108` | `/**` |
| `109` | `* Create your runnable task here.` |
| `110` | `*` |
| `111` | `* @return an instance of your runnable task under investigation` |
| `112` | `*/` |
| `113` | `protected` `abstract` `Runnable creatTask();` |
| `114` | |
| `115` | `/**` |
| `116` | `* Return an instance of the queue used in the thread pool.` |
| `117` | `*` |
| `118` | `* @return queue instance` |
| `119` | `*/` |
| `120` | `protected` `abstract` `BlockingQueue createWorkQueue();` |
| `121` | |
| `122` | `/**` |
| `123` | `* Calculate current cpu time. Various frameworks may be used here,` |
| `124` | `* depending on the operating system in use. (e.g.` |
| `125` | `* [http://www.hyperic.com/products/sigar](http://www.hyperic.com/products/sigar)). The more accurate the CPU time` |
| `126` | `* measurement, the more accurate the results for thread count boundaries.` |
| `127` | `*` |
| `128` | `* @return current cpu time of current thread` |
| `129` | `*/` |
| `130` | `protected` `abstract` `long` `getCurrentThreadCPUTime();` |
| `131` | |
| `132` | `}` |
然后自己继承这个抽象类并实现它的三个抽象方法,比如下面是我写的一个示例(任务是请求网络数据),其中我指定期望CPU利用率为1.0(即100%),任务队列总大小不超过100,000字节:
| `01` | `package` `pool_size_calculate;` |
| `02` | |
| `03` | `import` `java.io.BufferedReader;` |
| `04` | `import` `java.io.IOException;` |
| `05` | `import` `java.io.InputStreamReader;` |
| `06` | `import` `java.lang.management.ManagementFactory;` |
| `07` | `import` `java.math.BigDecimal;` |
| `08` | `import` `java.net.HttpURLConnection;` |
| `09` | `import` `java.net.URL;` |
| `10` | `import` `java.util.concurrent.BlockingQueue;` |
| `11` | `import` `java.util.concurrent.LinkedBlockingQueue;` |
| `12` | |
| `13` | `public` `class` `SimplePoolSizeCaculatorImpl ``extends` `PoolSizeCalculator {` |
| `14` | |
| `15` | `@Override` |
| `16` | `protected` `Runnable creatTask() {` |
| `17` | `return` `new` `AsyncIOTask();` |
| `18` | `}` |
| `19` | |
| `20` | `@Override` |
| `21` | `protected` `BlockingQueue createWorkQueue() {` |
| `22` | `return` `new` `LinkedBlockingQueue(``1000``);` |
| `23` | `}` |
| `24` | |
| `25` | `@Override` |
| `26` | `protected` `long` `getCurrentThreadCPUTime() {` |
| `27` | `return` `ManagementFactory.getThreadMXBean().getCurrentThreadCpuTime();` |
| `28` | `}` |
| `29` | |
| `30` | `public` `static` `void` `main(String[] args) {` |
| `31` | `PoolSizeCalculator poolSizeCalculator = ``new` `SimplePoolSizeCaculatorImpl();` |
| `32` | `poolSizeCalculator.calculateBoundaries(``new` `BigDecimal(``1.0``), ``new` `BigDecimal(``100000``));` |
| `33` | `}` |
| `34` | |
| `35` | `}` |
| `36` | |
| `37` | `/**` |
| `38` | `* 自定义的异步IO任务` |
| `39` | `* @author Will` |
| `40` | `*` |
| `41` | `*/` |
| `42` | `class` `AsyncIOTask ``implements` `Runnable {` |
| `43` | |
| `44` | `@Override` |
| `45` | `public` `void` `run() {` |
| `46` | `HttpURLConnection connection = ``null``;` |
| `47` | `BufferedReader reader = ``null``;` |
| `48` | `try` `{` |
| `49` | `String getURL = ``"[http://baidu.com](http://baidu.com/)"``;` |
| `50` | `URL getUrl = ``new` `URL(getURL);` |
| `51` | |
| `52` | `connection = (HttpURLConnection) getUrl.openConnection();` |
| `53` | `connection.connect();` |
| `54` | `reader = ``new` `BufferedReader(``new` `InputStreamReader(` |
| `55` | `connection.getInputStream()));` |
| `56` | |
| `57` | `String line;` |
| `58` | `while` `((line = reader.readLine()) != ``null``) {` |
| `59` | `// empty loop` |
| `60` | `}` |
| `61` | `}` |
| `62` | |
| `63` | `catch` `(IOException e) {` |
| `64` | |
| `65` | `} ``finally` `{` |
| `66` | `if``(reader != ``null``) {` |
| `67` | `try` `{` |
| `68` | `reader.close();` |
| `69` | `}` |
| `70` | `catch``(Exception e) {` |
| `71` | |
| `72` | `}` |
| `73` | `}` |
| `74` | `connection.disconnect();` |
| `75` | `}` |
| `76` | |
| `77` | `}` |
| `78` | |
| `79` | `}` |
得到的输出如下:
| `01` | `Target queue memory usage (bytes): 100000` |
| `02` | `createTask() produced pool_size_calculate.AsyncIOTask which took 40 bytes in a queue` |
| `03` | `Formula: 100000 / 40` |
| `04` | `* Recommended queue capacity (bytes): 2500` |
| `05` | `Number of CPU: 4` |
| `06` | `Target utilization: 1` |
| `07` | `Elapsed time (nanos): 3000000000` |
| `08` | `Compute time (nanos): 47181000` |
| `09` | `Wait time (nanos): 2952819000` |
| `10` | `Formula: 4 * 1 * (1 + 2952819000 / 47181000)` |
| `11` | `* Optimal thread count: 256` |
推荐的任务队列大小为2500,线程数为256,有点出乎意料之外。我可以如下构造一个线程池:
| `1` | `ThreadPoolExecutor pool =` |
| `2` | `new` `ThreadPoolExecutor(``256``, ``256``, 0L, TimeUnit.MILLISECONDS, ``new` `LinkedBlockingQueue(``2500``));` |
**原创文章,转载请注明:** 转载自[并发编程网 – ifeve.com](http://ifeve.com/)**本文链接地址:** [如何合理地估算线程池大小?](http://ifeve.com/how-to-calculate-threadpool-size/)
- JVM
- 深入理解Java内存模型
- 深入理解Java内存模型(一)——基础
- 深入理解Java内存模型(二)——重排序
- 深入理解Java内存模型(三)——顺序一致性
- 深入理解Java内存模型(四)——volatile
- 深入理解Java内存模型(五)——锁
- 深入理解Java内存模型(六)——final
- 深入理解Java内存模型(七)——总结
- Java内存模型
- Java内存模型2
- 堆内内存还是堆外内存?
- JVM内存配置详解
- Java内存分配全面浅析
- 深入Java核心 Java内存分配原理精讲
- jvm常量池
- JVM调优总结
- JVM调优总结(一)-- 一些概念
- JVM调优总结(二)-一些概念
- VM调优总结(三)-基本垃圾回收算法
- JVM调优总结(四)-垃圾回收面临的问题
- JVM调优总结(五)-分代垃圾回收详述1
- JVM调优总结(六)-分代垃圾回收详述2
- JVM调优总结(七)-典型配置举例1
- JVM调优总结(八)-典型配置举例2
- JVM调优总结(九)-新一代的垃圾回收算法
- JVM调优总结(十)-调优方法
- 基础
- Java 征途:行者的地图
- Java程序员应该知道的10个面向对象理论
- Java泛型总结
- 序列化与反序列化
- 通过反编译深入理解Java String及intern
- android 加固防止反编译-重新打包
- volatile
- 正确使用 Volatile 变量
- 异常
- 深入理解java异常处理机制
- Java异常处理的10个最佳实践
- Java异常处理手册和最佳实践
- Java提高篇——对象克隆(复制)
- Java中如何克隆集合——ArrayList和HashSet深拷贝
- Java中hashCode的作用
- Java提高篇之hashCode
- 常见正则表达式
- 类
- 理解java类加载器以及ClassLoader类
- 深入探讨 Java 类加载器
- 类加载器的工作原理
- java反射
- 集合
- HashMap的工作原理
- ConcurrentHashMap之实现细节
- java.util.concurrent 之ConcurrentHashMap 源码分析
- HashMap的实现原理和底层数据结构
- 线程
- 关于Java并发编程的总结和思考
- 40个Java多线程问题总结
- Java中的多线程你只要看这一篇就够了
- Java多线程干货系列(1):Java多线程基础
- Java非阻塞算法简介
- Java并发的四种风味:Thread、Executor、ForkJoin和Actor
- Java中不同的并发实现的性能比较
- JAVA CAS原理深度分析
- 多个线程之间共享数据的方式
- Java并发编程
- Java并发编程(1):可重入内置锁
- Java并发编程(2):线程中断(含代码)
- Java并发编程(3):线程挂起、恢复与终止的正确方法(含代码)
- Java并发编程(4):守护线程与线程阻塞的四种情况
- Java并发编程(5):volatile变量修饰符—意料之外的问题(含代码)
- Java并发编程(6):Runnable和Thread实现多线程的区别(含代码)
- Java并发编程(7):使用synchronized获取互斥锁的几点说明
- Java并发编程(8):多线程环境中安全使用集合API(含代码)
- Java并发编程(9):死锁(含代码)
- Java并发编程(10):使用wait/notify/notifyAll实现线程间通信的几点重要说明
- java并发编程-II
- Java多线程基础:进程和线程之由来
- Java并发编程:如何创建线程?
- Java并发编程:Thread类的使用
- Java并发编程:synchronized
- Java并发编程:Lock
- Java并发编程:volatile关键字解析
- Java并发编程:深入剖析ThreadLocal
- Java并发编程:CountDownLatch、CyclicBarrier和Semaphore
- Java并发编程:线程间协作的两种方式:wait、notify、notifyAll和Condition
- Synchronized与Lock
- JVM底层又是如何实现synchronized的
- Java synchronized详解
- synchronized 与 Lock 的那点事
- 深入研究 Java Synchronize 和 Lock 的区别与用法
- JAVA编程中的锁机制详解
- Java中的锁
- TreadLocal
- 深入JDK源码之ThreadLocal类
- 聊一聊ThreadLocal
- ThreadLocal
- ThreadLocal的内存泄露
- 多线程设计模式
- Java多线程编程中Future模式的详解
- 原子操作(CAS)
- [译]Java中Wait、Sleep和Yield方法的区别
- 线程池
- 如何合理地估算线程池大小?
- JAVA线程池中队列与池大小的关系
- Java四种线程池的使用
- 深入理解Java之线程池
- java并发编程III
- Java 8并发工具包漫游指南
- 聊聊并发
- 聊聊并发(一)——深入分析Volatile的实现原理
- 聊聊并发(二)——Java SE1.6中的Synchronized
- 文件
- 网络
- index
- 内存文章索引
- 基础文章索引
- 线程文章索引
- 网络文章索引
- IOC
- 设计模式文章索引
- 面试
- Java常量池详解之一道比较蛋疼的面试题
- 近5年133个Java面试问题列表
- Java工程师成神之路
- Java字符串问题Top10
- 设计模式
- Java:单例模式的七种写法
- Java 利用枚举实现单例模式
- 常用jar
- HttpClient和HtmlUnit的比较总结
- IO
- NIO
- NIO入门
- 注解
- Java Annotation认知(包括框架图、详细介绍、示例说明)