企业🤖AI智能体构建引擎,智能编排和调试,一键部署,支持私有化部署方案 广告
[TOC] # 可重入锁  如果锁具备可重入性,则称作为可重入锁。像synchronized和ReentrantLock都是可重入锁,可重入性在我看来实际上表明了锁的分配机制:基于线程的分配,而不是基于方法调用的分配。举个简单的例子,当一个线程执行到某个synchronized方法时,比如说method1,而在method1中会调用另外一个synchronized方法method2,此时线程不必重新去申请锁,而是可以直接执行方法method2。 看下面这段代码就明白了: ~~~ class MyClass { public synchronized void method1() { method2(); } public synchronized void method2() { } } ~~~ 上述代码中的两个方法method1和method2都用synchronized修饰了,假如某一时刻,线程A执行到了method1,此时线程A获取了这个对象的锁,而由于method2也是synchronized方法,假如synchronized不具备可重入性,此时线程A需要重新申请锁。但是这就会造成一个问题,因为线程A已经持有了该对象的锁,而又在申请获取该对象的锁,这样就会线程A一直等待永远不会获取到的锁。 而由于synchronized和Lock都具备可重入性,所以不会发生上述现象。 # 可中断锁 可中断锁:顾名思义,就是可以相应中断的锁。 在Java中,synchronized就不是可中断锁,而Lock是可中断锁。 如果某一线程A正在执行锁中的代码,另一线程B正在等待获取该锁,可能由于等待时间过长,线程B不想等待了,想先处理其他事情,我们可以让它中断自己或者在别的线程中中断它,这种就是可中断锁。 在前面演示lockInterruptibly()的用法时已经体现了Lock的可中断性。 # 公平锁 公平锁即尽量以请求锁的顺序来获取锁。比如同是有多个线程在等待一个锁,当这个锁被释放时,等待时间最久的线程(最先请求的线程)会获得该所,这种就是公平锁。 非公平锁即无法保证锁的获取是按照请求锁的顺序进行的。这样就可能导致某个或者一些线程永远获取不到锁。 在Java中,synchronized就是非公平锁,它无法保证等待的线程获取锁的顺序。 而对于ReentrantLock和ReentrantReadWriteLock,它默认情况下是非公平锁,但是可以设置为公平锁。 看一下这2个类的源代码就清楚了: ![](https://box.kancloud.cn/e302c836750138368f4c81a29f4e1777_567x689.png) 在ReentrantLock中定义了2个静态内部类,一个是NotFairSync,一个是FairSync,分别用来实现非公平锁和公平锁。 我们可以在创建ReentrantLock对象时,通过以下方式来设置锁的公平性: ~~~ ReentrantLock lock = new ReentrantLock(true); ~~~ 如果参数为true表示为公平锁,为fasle为非公平锁。默认情况下,如果使用无参构造器,则是非公平锁。 ![](https://box.kancloud.cn/cd40db48e0cbe58cb5029f0f9efdfae7_607x308.png) 另外在ReentrantLock类中定义了很多方法,比如: ~~~ isFair() //判断锁是否是公平锁 isLocked() //判断锁是否被任何线程获取了 isHeldByCurrentThread() //判断锁是否被当前线程获取了 hasQueuedThreads() //判断是否有线程在等待该锁 ~~~ 在ReentrantReadWriteLock中也有类似的方法,同样也可以设置为公平锁和非公平锁。不过要记住,ReentrantReadWriteLock并未实现Lock接口,它实现的是ReadWriteLock接口。 # 读写锁 读写锁将对一个资源(比如文件)的访问分成了2个锁,一个读锁和一个写锁。 正因为有了读写锁,才使得多个线程之间的读操作不会发生冲突。 ReadWriteLock就是读写锁,它是一个接口,ReentrantReadWriteLock实现了这个接口。 可以通过readLock()获取读锁,通过writeLock()获取写锁。