[TOC]
# 可重入锁
如果锁具备可重入性,则称作为可重入锁。像synchronized和ReentrantLock都是可重入锁,可重入性在我看来实际上表明了锁的分配机制:基于线程的分配,而不是基于方法调用的分配。举个简单的例子,当一个线程执行到某个synchronized方法时,比如说method1,而在method1中会调用另外一个synchronized方法method2,此时线程不必重新去申请锁,而是可以直接执行方法method2。
看下面这段代码就明白了:
~~~
class MyClass {
public synchronized void method1() {
method2();
}
public synchronized void method2() {
}
}
~~~
上述代码中的两个方法method1和method2都用synchronized修饰了,假如某一时刻,线程A执行到了method1,此时线程A获取了这个对象的锁,而由于method2也是synchronized方法,假如synchronized不具备可重入性,此时线程A需要重新申请锁。但是这就会造成一个问题,因为线程A已经持有了该对象的锁,而又在申请获取该对象的锁,这样就会线程A一直等待永远不会获取到的锁。
而由于synchronized和Lock都具备可重入性,所以不会发生上述现象。
# 可中断锁
可中断锁:顾名思义,就是可以相应中断的锁。
在Java中,synchronized就不是可中断锁,而Lock是可中断锁。
如果某一线程A正在执行锁中的代码,另一线程B正在等待获取该锁,可能由于等待时间过长,线程B不想等待了,想先处理其他事情,我们可以让它中断自己或者在别的线程中中断它,这种就是可中断锁。
在前面演示lockInterruptibly()的用法时已经体现了Lock的可中断性。
# 公平锁
公平锁即尽量以请求锁的顺序来获取锁。比如同是有多个线程在等待一个锁,当这个锁被释放时,等待时间最久的线程(最先请求的线程)会获得该所,这种就是公平锁。
非公平锁即无法保证锁的获取是按照请求锁的顺序进行的。这样就可能导致某个或者一些线程永远获取不到锁。
在Java中,synchronized就是非公平锁,它无法保证等待的线程获取锁的顺序。
而对于ReentrantLock和ReentrantReadWriteLock,它默认情况下是非公平锁,但是可以设置为公平锁。
看一下这2个类的源代码就清楚了:
![](https://box.kancloud.cn/e302c836750138368f4c81a29f4e1777_567x689.png)
在ReentrantLock中定义了2个静态内部类,一个是NotFairSync,一个是FairSync,分别用来实现非公平锁和公平锁。
我们可以在创建ReentrantLock对象时,通过以下方式来设置锁的公平性:
~~~
ReentrantLock lock = new ReentrantLock(true);
~~~
如果参数为true表示为公平锁,为fasle为非公平锁。默认情况下,如果使用无参构造器,则是非公平锁。
![](https://box.kancloud.cn/cd40db48e0cbe58cb5029f0f9efdfae7_607x308.png)
另外在ReentrantLock类中定义了很多方法,比如:
~~~
isFair() //判断锁是否是公平锁
isLocked() //判断锁是否被任何线程获取了
isHeldByCurrentThread() //判断锁是否被当前线程获取了
hasQueuedThreads() //判断是否有线程在等待该锁
~~~
在ReentrantReadWriteLock中也有类似的方法,同样也可以设置为公平锁和非公平锁。不过要记住,ReentrantReadWriteLock并未实现Lock接口,它实现的是ReadWriteLock接口。
# 读写锁
读写锁将对一个资源(比如文件)的访问分成了2个锁,一个读锁和一个写锁。
正因为有了读写锁,才使得多个线程之间的读操作不会发生冲突。
ReadWriteLock就是读写锁,它是一个接口,ReentrantReadWriteLock实现了这个接口。
可以通过readLock()获取读锁,通过writeLock()获取写锁。
- linux
- 常用命令
- 高级文本命令
- 面试题
- redis
- String
- list
- hash
- set
- sortedSet
- 案例-推荐
- java高级特性
- 多线程
- 实现线程的三种方式
- 同步关键词
- 读写锁
- 锁的相关概念
- 多线程的join
- 有三个线程T1 T2 T3,保证顺序执行
- java五种线程池
- 守护线程与普通线程
- ThreadLocal
- BlockingQueue消息队列
- JMS
- 反射
- volatile
- jvm
- IO
- nio
- netty
- netty简介
- 案例一发送字符串
- 案例二发送对象
- 轻量级RPC开发
- 简介
- spring(IOC/AOP)
- spring初始化顺序
- 通过ApplicationContextAware加载Spring上下文
- InitializingBean的作用
- 结论
- 自定义注解
- zk在框架中的应用
- hadoop
- 简介
- hadoop集群搭建
- hadoop单机安装
- HDFS简介
- hdfs基本操作
- hdfs环境搭建
- 常见问题汇总
- hdfs客户端操作
- mapreduce工作机制
- 案列-单词统计
- 局部聚合Combiner
- 案列-流量统计(分区,排序,比较)
- 案列-倒排索引
- 案例-共同好友
- 案列-join算法实现
- 案例-求topN(分组)
- 自定义inputFormat
- 自定义outputFormat
- 框架运算全流程
- mapreduce的优化方案
- HA机制
- Hive
- 安装
- DDL操作
- 创建表
- 修改表
- DML操作
- Load
- insert
- select
- join操作
- 严格模式
- 数据类型
- shell参数
- 函数
- 内置运算符
- 内置函数
- 自定义函数
- Transform实现
- 特殊分割符处理
- 案例
- 级联求和accumulate
- flume
- 简介
- 安装
- 常用的组件
- 拦截器
- 案例
- 采集目录到HDFS
- 采集文件到HDFS
- 多个agent串联
- 日志采集和汇总
- 自定义拦截器
- 高可用配置
- 使用注意
- sqoop
- 安装
- 数据导入
- 导入数据到HDFS
- 导入关系表到HIVE
- 导入表数据子集
- 增量导入
- 数据导出
- 作业
- 原理
- azkaban
- 简介
- 安装
- 案例
- 简介
- command类型单一job
- command类型多job工作流flow
- HDFS操作任务
- mapreduce任务
- hive脚本任务
- hbase
- 简介
- 安装
- 命令行
- 基本CURD
- 过滤器查询
- 系统架构
- 物理存储
- 寻址机制
- 读写过程
- Region管理
- master工作机制
- 建表高级属性
- 与mapreduce结合
- 协处理器
- 点击流平台开发
- 简介
- storm
- 简介
- 安装
- 集群启动及任务过程分析
- 单词统计
- 并行度
- ACK容错机制
- ACK简介