[TOC]
# volatile变量非线程安全
~~~
package reflect;
public class TestVolatile {
public static volatile int number = 0;
public static void main(String[] args) throws InterruptedException {
for (int i = 0; i < 1000; i++) {
new Thread(new Runnable() {
@Override
public void run() {
for (int i = 0; i < 1000; i++) {
//获取number是一致的,
//++不是原子性的,做这个值的时候不是原子性的
number++;
}
}
}).start();
}
//等他把值算完
Thread.sleep(5000);
System.out.println(number);
}
}
~~~
![](https://box.kancloud.cn/9cd9bc08003304e12b479b9525bbd212_482x546.png)
在 java 垃圾回收整理一文中,描述了jvm运行时刻内存的分配。其中有一个内存区域是jvm虚拟机栈,每一个线程运行时都有一个线程栈,
线程栈保存了线程运行时候变量值信息。当线程访问某一个对象时候值的时候,首先通过对象的引用找到对应在堆内存的变量的值,然后把堆内存
变量的具体值load到线程本地内存中,建立一个变量副本,之后线程就不再和对象在堆内存变量值有任何关系,而是直接修改副本变量的值,
在修改完之后的某一个时刻(线程退出之前),自动把线程变量副本的值回写到对象在堆中变量。这样在堆中的对象的值就产生变化了。下面一幅图
![](https://box.kancloud.cn/df0f7e62ceb7149c3ba2dfe0e1624a4f_1124x1092.png)
read and load 从主存复制变量到当前工作内存
use and assign 执行代码,改变共享变量值
store and write 用工作内存数据刷新主存相关内容
其中use and assign 可以多次出现
但是这一些操作并不是原子性,也就是 在read load之后,如果主内存count变量发生修改之后,线程工作内存中的值由于已经加载,不会产生对应的变化,所以计算出来的结果会和预期不一样
对于volatile修饰的变量,jvm虚拟机只是保证从主内存加载到线程工作内存的值是最新的
例如假如线程1,线程2 在进行read,load 操作中,发现主内存中count的值都是5,那么都会加载这个最新的值
在线程1堆count进行修改之后,会write到主内存中,主内存中的count变量就会变为6
线程2由于已经进行read,load操作,在进行运算之后,也会更新主内存count的变量值为6
导致两个线程及时用volatile关键字修改之后,还是会存在并发的情况。
---
如果是做竞争的写,用volatile没意义
如果是一个人写,其他人读,用volatile才有意义
- linux
- 常用命令
- 高级文本命令
- 面试题
- redis
- String
- list
- hash
- set
- sortedSet
- 案例-推荐
- java高级特性
- 多线程
- 实现线程的三种方式
- 同步关键词
- 读写锁
- 锁的相关概念
- 多线程的join
- 有三个线程T1 T2 T3,保证顺序执行
- java五种线程池
- 守护线程与普通线程
- ThreadLocal
- BlockingQueue消息队列
- JMS
- 反射
- volatile
- jvm
- IO
- nio
- netty
- netty简介
- 案例一发送字符串
- 案例二发送对象
- 轻量级RPC开发
- 简介
- spring(IOC/AOP)
- spring初始化顺序
- 通过ApplicationContextAware加载Spring上下文
- InitializingBean的作用
- 结论
- 自定义注解
- zk在框架中的应用
- hadoop
- 简介
- hadoop集群搭建
- hadoop单机安装
- HDFS简介
- hdfs基本操作
- hdfs环境搭建
- 常见问题汇总
- hdfs客户端操作
- mapreduce工作机制
- 案列-单词统计
- 局部聚合Combiner
- 案列-流量统计(分区,排序,比较)
- 案列-倒排索引
- 案例-共同好友
- 案列-join算法实现
- 案例-求topN(分组)
- 自定义inputFormat
- 自定义outputFormat
- 框架运算全流程
- mapreduce的优化方案
- HA机制
- Hive
- 安装
- DDL操作
- 创建表
- 修改表
- DML操作
- Load
- insert
- select
- join操作
- 严格模式
- 数据类型
- shell参数
- 函数
- 内置运算符
- 内置函数
- 自定义函数
- Transform实现
- 特殊分割符处理
- 案例
- 级联求和accumulate
- flume
- 简介
- 安装
- 常用的组件
- 拦截器
- 案例
- 采集目录到HDFS
- 采集文件到HDFS
- 多个agent串联
- 日志采集和汇总
- 自定义拦截器
- 高可用配置
- 使用注意
- sqoop
- 安装
- 数据导入
- 导入数据到HDFS
- 导入关系表到HIVE
- 导入表数据子集
- 增量导入
- 数据导出
- 作业
- 原理
- azkaban
- 简介
- 安装
- 案例
- 简介
- command类型单一job
- command类型多job工作流flow
- HDFS操作任务
- mapreduce任务
- hive脚本任务
- hbase
- 简介
- 安装
- 命令行
- 基本CURD
- 过滤器查询
- 系统架构
- 物理存储
- 寻址机制
- 读写过程
- Region管理
- master工作机制
- 建表高级属性
- 与mapreduce结合
- 协处理器
- 点击流平台开发
- 简介
- storm
- 简介
- 安装
- 集群启动及任务过程分析
- 单词统计
- 并行度
- ACK容错机制
- ACK简介