[TOC]
# 介绍
拦截器是简单的插件式组件,设置在source和channel之间。source接收到的事件event,在写入channel之前,拦截器都可以进行转换或者删除这些事件。每个拦截器只处理同一个source接收到的事件。可以自定义拦截器
# flume内置的拦截器
## 时间戳拦截器
flume中一个最经常使用的拦截器 ,该拦截器的作用是将时间戳插入到flume的事件报头中。如果不使用任何拦截器,flume接受到的只有message。时间戳拦截器的配置:
![](https://box.kancloud.cn/464464c9432ad35799f6d69cb8061d9c_704x328.png)
source连接到时间戳拦截器的配置:
~~~
a1.sources.r1.interceptors=i1
a1.sources.r1.interceptors.i1.type=timestamp
a1.sources.r1.interceptors.i1.preserveExisting=false
~~~
## 主机拦截器
主机拦截器插入服务器的ip地址或者主机名,agent将这些内容插入到事件的报头中。事件报头中的key使用hostHeader配置,默认是host。主机拦截器的配置:
![](https://box.kancloud.cn/4127ba92df55a4766518629cb8bb0b15_701x406.png)
source连接到主机拦截器的配置:
~~~
a1.sources.r1.interceptors=i2
a1.sources.r1.interceptors.i2.type=host
a1.sources.r1.interceptors.i2.useIP=false
a1.sources.r1.interceptors.i2.preserveExisting=false
~~~
## 静态拦截器
静态拦截器的作用是将k/v插入到事件的报头中。配置如下
![](https://box.kancloud.cn/92fe18b32ef5d3f46330bc70eab86de6_694x409.png)
source连接到静态拦截器的配置:
~~~
a1.sources.r1.interceptors= i3
a1.sources.r1.interceptors.static.type=static
# 自己指定k/v
a1.sources.r1.interceptors.static.key=logs
a1.sources.r1.interceptors.static.value=logFlume
a1.sources.r1.interceptors.static.preserveExisting=false
~~~
## 正则过滤拦截器
在日志采集的时候,可能有一些数据是我们不需要的,这样添加过滤拦截器,可以过滤掉不需要的日志,也可以根据需要收集满足正则条件的日志。配置如下
![](https://box.kancloud.cn/4e7443fb526ccfd257480f33f3c8c17e_683x403.png)
source连接到正则过滤拦截器的配置:
~~~
a1.sources.r1.interceptors=i4
a1.sources.r1.interceptors.i4.type=REGEX_FILTER
# 保留内容中出现rm或者kill的字符串的记录
a1.sources.r1.interceptors.i4.regex=(rm)|(kill)
a1.sources.r1.interceptors.i4.excludeEvents=false
~~~
这样配置的拦截器就只会接收日志消息中带有rm 或者kill的日志。
测试案例:
test_regex.conf
~~~
# 定义这个agent中各组件的名字
a1.sources = r1
a1.sinks = k1
a1.channels = c1
# 描述和配置source组件:r1
a1.sources.r1.type = netcat
a1.sources.r1.bind = itcast01
a1.sources.r1.port = 44444
a1.sources.r1.
a1.sources.r1.interceptors=i4
a1.sources.r1.interceptors.i4.type=REGEX_FILTER
#保留内容中出现hadoop或者是spark的字符串的记录
a1.sources.r1.interceptors.i4.regex=(hadoop)|(spark)
a1.sources.r1.interceptors.i4.excludeEvents=false
# 描述和配置sink组件:k1
a1.sinks.k1.type = logger
# 描述和配置channel组件,此处使用是内存缓存的方式
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100
# 描述和配置source channel sink之间的连接关系
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1
~~~
- linux
- 常用命令
- 高级文本命令
- 面试题
- redis
- String
- list
- hash
- set
- sortedSet
- 案例-推荐
- java高级特性
- 多线程
- 实现线程的三种方式
- 同步关键词
- 读写锁
- 锁的相关概念
- 多线程的join
- 有三个线程T1 T2 T3,保证顺序执行
- java五种线程池
- 守护线程与普通线程
- ThreadLocal
- BlockingQueue消息队列
- JMS
- 反射
- volatile
- jvm
- IO
- nio
- netty
- netty简介
- 案例一发送字符串
- 案例二发送对象
- 轻量级RPC开发
- 简介
- spring(IOC/AOP)
- spring初始化顺序
- 通过ApplicationContextAware加载Spring上下文
- InitializingBean的作用
- 结论
- 自定义注解
- zk在框架中的应用
- hadoop
- 简介
- hadoop集群搭建
- hadoop单机安装
- HDFS简介
- hdfs基本操作
- hdfs环境搭建
- 常见问题汇总
- hdfs客户端操作
- mapreduce工作机制
- 案列-单词统计
- 局部聚合Combiner
- 案列-流量统计(分区,排序,比较)
- 案列-倒排索引
- 案例-共同好友
- 案列-join算法实现
- 案例-求topN(分组)
- 自定义inputFormat
- 自定义outputFormat
- 框架运算全流程
- mapreduce的优化方案
- HA机制
- Hive
- 安装
- DDL操作
- 创建表
- 修改表
- DML操作
- Load
- insert
- select
- join操作
- 严格模式
- 数据类型
- shell参数
- 函数
- 内置运算符
- 内置函数
- 自定义函数
- Transform实现
- 特殊分割符处理
- 案例
- 级联求和accumulate
- flume
- 简介
- 安装
- 常用的组件
- 拦截器
- 案例
- 采集目录到HDFS
- 采集文件到HDFS
- 多个agent串联
- 日志采集和汇总
- 自定义拦截器
- 高可用配置
- 使用注意
- sqoop
- 安装
- 数据导入
- 导入数据到HDFS
- 导入关系表到HIVE
- 导入表数据子集
- 增量导入
- 数据导出
- 作业
- 原理
- azkaban
- 简介
- 安装
- 案例
- 简介
- command类型单一job
- command类型多job工作流flow
- HDFS操作任务
- mapreduce任务
- hive脚本任务
- hbase
- 简介
- 安装
- 命令行
- 基本CURD
- 过滤器查询
- 系统架构
- 物理存储
- 寻址机制
- 读写过程
- Region管理
- master工作机制
- 建表高级属性
- 与mapreduce结合
- 协处理器
- 点击流平台开发
- 简介
- storm
- 简介
- 安装
- 集群启动及任务过程分析
- 单词统计
- 并行度
- ACK容错机制
- ACK简介