🔥码云GVP开源项目 12k star Uniapp+ElementUI 功能强大 支持多语言、二开方便! 广告
[TOC] # 需求 将多个小文件合并成一个文件SequenceFile,SequenceFile里面存储着多个小文件,存储的形式为文件路径+名称为key,文件的内容为value 输入数据 ~~~ one.txt two.txt three.txt ~~~ 输出数据 ~~~ part-r-0000 ~~~ # 分析 小文件的优化无非以下几种方式: 1. 在数据采集的时候,就将小文件或小批数据合成大文件再上传HDFS 2. 在业务处理之前,在HDFS上使用mapreduce程序对小文件进行合并 3. 在mapreduce处理时,可采用combineInputFormat提高效率 # 实现 本节实现的是上述第二种方式 程序的核心机制: 自定义一个InputFormat 改写RecordReader,实现一次读取一个完整文件封装为KV 在输出时使用SequenceFileOutPutFormat输出合并文件 **代码如下** 自定义InputFromat ~~~ public class WholeFileInputFormat extends FileInputFormat<NullWritable, BytesWritable> { //设置每个小文件不可分片,保证一个小文件生成一个key-value键值对 @Override protected boolean isSplitable(JobContext context, Path file) { return false; } //创建个读取的流 @Override public RecordReader<NullWritable, BytesWritable> createRecordReader(InputSplit split, TaskAttemptContext context) throws IOException, InterruptedException { WholeFileRecordReader reader = new WholeFileRecordReader(); reader.initialize(split, context); return reader; } } ~~~ 自定义RecordReader ~~~ class WholeFileRecordReader extends RecordReader<NullWritable, BytesWritable> { private FileSplit fileSplit; private Configuration conf; private BytesWritable value = new BytesWritable(); //默认没有读取文件 private boolean processed = false; //初始化方法 @Override public void initialize(InputSplit split, TaskAttemptContext context) throws IOException, InterruptedException { //获取切片信息,我们知道切片就是文件,InputSplit是所有输入的切片,不转我们后面获取不到切片的信息 this.fileSplit = (FileSplit) split; //获取上下文信息 this.conf = context.getConfiguration(); } //通过流的方式一次读取一个文件,几个文件就循环几次 @Override public boolean nextKeyValue() throws IOException, InterruptedException { //读取一个一个文件 if (!processed) { //定义缓存区 byte[] contents = new byte[(int) fileSplit.getLength()]; //根据切片信息获取文件路径 Path file = fileSplit.getPath(); //根据文件路径信息获取文件系统 FileSystem fs = file.getFileSystem(conf); FSDataInputStream in = null; try { //读取数据,打开文件输入流 in = fs.open(file); //读取文件内容,流的拷贝 IOUtils.readFully(in, contents, 0, contents.length); //输出文件内容 value.set(contents, 0, contents.length); } finally { //关闭IO流 IOUtils.closeStream(in); IOUtils.closeStream(fs); } //表示不让他这个方法再执行了 processed = true; return true; } return false; } //获取当前的key @Override public NullWritable getCurrentKey() throws IOException, InterruptedException { return NullWritable.get(); } //获取当前的value @Override public BytesWritable getCurrentValue() throws IOException,InterruptedException { return value; } //读取的过程 @Override public float getProgress() throws IOException { //是否在读取 return processed ? 1.0f : 0.0f; } //关流 @Override public void close() throws IOException { // do nothing } } ~~~ **定义mapreduce处理流程** 定义map处理流程 ~~~ import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.BytesWritable; import org.apache.hadoop.io.NullWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.lib.input.FileSplit; import java.io.IOException; //自定义的FileRecordReader那边泛型是什么这边输入就是什么 class SequenceFileMapper extends Mapper<NullWritable, BytesWritable, Text, BytesWritable> { private Text k = new Text(); @Override protected void setup(Context context) throws IOException, InterruptedException { //通过上下文获取整个切片信息 FileSplit split = (FileSplit) context.getInputSplit(); //获取路径 Path path = split.getPath(); k.set(path.toString()); } //几个文件就执行几次map @Override protected void map(NullWritable key, BytesWritable value, Context context) throws IOException, InterruptedException { context.write(k, value); } } ~~~ 定义reducer处理流程 ~~~ class SequenceFileReducer extends Reducer<Text, BytesWritable, Text, BytesWritable> { @Override protected void reduce(Text key, Iterable<BytesWritable> values, Context context) throws IOException, InterruptedException { for(BytesWritable bytesWritable : values) { context.write(key, bytesWritable); } } } ~~~ 定义执行 ~~~ public class SequenceFileDriver { public static void main(String[] args) throws Exception { Configuration conf = new Configuration(); Job job = Job.getInstance(conf); job.setJarByClass(SequenceFileDriver.class); job.setMapperClass(SequenceFileMapper.class); job.setReducerClass(SequenceFileReducer.class); job.setInputFormatClass(WholeFileInputFormat.class); job.setOutputFormatClass(SequenceFileOutputFormat.class); job.setMapOutputKeyClass(Text.class); job.setMapOutputValueClass(BytesWritable.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(BytesWritable.class); //告诉框架,我们要处理的数据文件在那个路径下 FileInputFormat.setInputPaths(job, new Path("/Users/jdxia/Desktop/website/data/input/")); //如果有这个文件夹就删除 Path out = new Path("/Users/jdxia/Desktop/website/data/output/"); FileSystem fileSystem = FileSystem.get(conf); if (fileSystem.exists(out)) { fileSystem.delete(out, true); } //告诉框架,我们的处理结果要输出到什么地方 FileOutputFormat.setOutputPath(job, out); boolean res = job.waitForCompletion(true); System.exit(res ? 0 : 1); } } ~~~