# 剖析Disruptor:为什么会这么快?
## (三)伪共享(False Sharing)
缓存系统中是以缓存行(cache line)为单位存储的。缓存行是2的整数幂个连续字节,一般为32-256个字节。最常见的缓存行大小是64个字节。当多线程修改互相独立的变量时,如果这些变量共享同一个缓存行,就会无意中影响彼此的性能,这就是伪共享。缓存行上的写竞争是运行在SMP系统中并行线程实现可伸缩性最重要的限制因素。有人将伪共享描述成无声的性能杀手,因为从代码中很难看清楚是否会出现伪共享。
为了让可伸缩性与线程数呈线性关系,就必须确保不会有两个线程往同一个变量或缓存行中写。两个线程写同一个变量可以在代码中发现。为了确定互相独立的变量是否共享了同一个缓存行,就需要了解内存布局,或找个工具告诉我们。Intel VTune就是这样一个分析工具。本文中我将解释Java对象的内存布局以及我们该如何填充缓存行以避免伪共享。
![](https://box.kancloud.cn/048fb914574ddb953aeb7d9fba423317_557x603.png)
图 1.
图1说明了伪共享的问题。在核心1上运行的线程想更新变量X,同时核心2上的线程想要更新变量Y。不幸的是,这两个变量在同一个缓存行中。每个线程都要去竞争缓存行的所有权来更新变量。如果核心1获得了所有权,缓存子系统将会使核心2中对应的缓存行失效。当核心2获得了所有权然后执行更新操作,核心1就要使自己对应的缓存行失效。这会来来回回的经过L3缓存,大大影响了性能。如果互相竞争的核心位于不同的插槽,就要额外横跨插槽连接,问题可能更加严重。
### Java内存布局(Java Memory Layout)
对于HotSpot JVM,所有对象都有两个字长的对象头。第一个字是由24位哈希码和8位标志位(如锁的状态或作为锁对象)组成的Mark Word。第二个字是对象所属类的引用。如果是数组对象还需要一个额外的字来存储数组的长度。每个对象的起始地址都对齐于8字节以提高性能。因此当封装对象的时候为了高效率,对象字段声明的顺序会被重排序成下列基于字节大小的顺序:
1. doubles (8) 和 longs (8)
2. ints (4) 和 floats (4)
3. shorts (2) 和 chars (2)
4. booleans (1) 和 bytes (1)
5. references (4/8)
6. <子类字段重复上述顺序>
*(译注:更多HotSpot虚拟机对象结构相关内容:http://www.infoq.com/cn/articles/jvm-hotspot)*
了解这些之后就可以在任意字段间用7个long来填充缓存行。在Disruptor里我们对RingBuffer的cursor和BatchEventProcessor的序列进行了缓存行填充。
为了展示其性能影响,我们启动几个线程,每个都更新它自己独立的计数器。计数器是volatile long类型的,所以其它线程能看到它们的进展。
```
public final class FalseSharing
implements Runnable
{
public final static int NUM_THREADS = 4; // change
public final static long ITERATIONS = 500L * 1000L * 1000L;
private final int arrayIndex;
private static VolatileLong[] longs = new VolatileLong[NUM_THREADS];
static
{
for (int i = 0; i < longs.length; i++)
{
longs[i] = new VolatileLong();
}
}
public FalseSharing(final int arrayIndex)
{
this.arrayIndex = arrayIndex;
}
public static void main(final String[] args) throws Exception
{
final long start = System.nanoTime();
runTest();
System.out.println("duration = " + (System.nanoTime() - start));
}
private static void runTest() throws InterruptedException
{
Thread[] threads = new Thread[NUM_THREADS];
for (int i = 0; i < threads.length; i++)
{
threads[i] = new Thread(new FalseSharing(i));
}
for (Thread t : threads)
{
t.start();
}
for (Thread t : threads)
{
t.join();
}
}
public void run()
{
long i = ITERATIONS + 1;
while (0 != --i)
{
longs[arrayIndex].value = i;
}
}
public final static class VolatileLong
{
public volatile long value = 0L;
public long p1, p2, p3, p4, p5, p6; // comment out
}
}
```
### 结果(Results)
运行上面的代码,增加线程数以及添加/移除缓存行的填充,下面的图2描述了我得到的结果。这是在我4核Nehalem上测得的运行时间。
![](https://box.kancloud.cn/4787685f542d7d68aadefbe2c4bb6dc9_483x291.png)
图 2.
从不断上升的测试所需时间中能够明显看出伪共享的影响。没有缓存行竞争时,我们几近达到了随着线程数的线性扩展。
这并不是个完美的测试,因为我们不能确定这些VolatileLong会布局在内存的什么位置。它们是独立的对象。但是经验告诉我们同一时间分配的对象趋向集中于一块。
所以你也看到了,伪共享可能是无声的性能杀手。
- 首页
- 剖析Disruptor为什么会这么快
- 1.1 锁的缺点
- 1.2 神奇的缓存行填充
- 1.3 伪共享
- 1.4 揭秘内存屏障
- Disruptor如何工作和使用
- 2.1 Ringbuffer的特别之处
- 2.2 如何从Ringbuffer读取
- 2.3 写入Ringbuffer
- 2.4 解析Disruptor关系组装
- 2.5 Disruptor(无锁并发框架)-发布
- 2.6 LMAX Disruptor 一个高性能、低延迟且简单的框架
- 2.7 Disruptor Wizard已死,Disruptor Wizard永存!
- 2.8 Disruptor 2.0更新摘要
- 2.9 线程间共享数据不需要竞争
- Disruptor的应用
- 3.1 LMAX的架构
- 3.2 通过Axon和Disruptor处理1M tps