🔥码云GVP开源项目 12k star Uniapp+ElementUI 功能强大 支持多语言、二开方便! 广告
[TOC] # 求和 ~~~ import numpy as np tang_array = np.array([[1, 2, 3], [4, 5, 6]]) print(tang_array) # 求和 npSum = np.sum(tang_array) print(np.sum(tang_array)) ~~~ 输出 ~~~ [[1 2 3] [4 5 6]] 21 ~~~ # 指定要沿着什么轴(维度)求和 ## 竖着求和 ![](https://box.kancloud.cn/86e180d055b53ae79b79866095aa1dd4_214x122.png) ~~~ import numpy as np tang_array = np.array([[1, 2, 3], [4, 5, 6]]) # 也可以写成tang_array.sum(axis=0) npSum = np.sum(tang_array, axis=0) print(npSum) ~~~ 输出 `[5 7 9]` ## 横着求和 ![](https://box.kancloud.cn/eae9fe4d0b9f83cb3172b14185250fb4_230x116.png) ~~~ import numpy as np tang_array = np.array([[1, 2, 3], [4, 5, 6]]) # 也可以写成tang_array.sum(axis=1) # axis = -1也可以 npSum = np.sum(tang_array, axis=1) print(npSum) ~~~ 输出 `[ 6 15]` # 乘积 ~~~ import numpy as np tang_array = np.array([[1, 2, 3], [4, 5, 6]]) # 竖着乘 rel = tang_array.prod(axis=0) print(rel) # 横着乘,都乘起来不写参数 result = tang_array.prod(axis=1) print(result) ~~~ 输出 ~~~ [ 4 10 18] [ 6 120] ~~~ # 取最小值 ~~~ import numpy as np tang_array = np.array([[1, 2, 3], [4, 5, 6]]) # 全局最小值 rel = tang_array.min() print(rel) # 竖着取最小值 Vertically = tang_array.min(axis=0) print(Vertically) # 横着最小值 Sideways = tang_array.min(axis=1) print(Sideways) ~~~ 输出 ~~~ 1 [1 2 3] [1 4] ~~~ 相应最大值是max **求最小值的索引** ~~~ import numpy as np tang_array = np.array([[1, 2, 3], [4, 5, 6]]) # 如果要那个维度最小的索引就加参数axis= argmin = tang_array.argmin() print(argmin) ~~~ 输出 `0` # 求均值 ~~~ import numpy as np tang_array = np.array([[1, 2, 3], [4, 5, 6]]) # 全局的均值 mean = tang_array.mean() print(mean) # 求竖着的均值 array_mean = tang_array.mean(axis=0) print(array_mean) ~~~ 输出 ~~~ 3.5 [ 2.5 3.5 4.5] ~~~ # 求标准差 ![](https://box.kancloud.cn/67ab480a69e165e7ac88522fda3e4d3f_1226x298.png) ~~~ tang_array = np.array([[1, 2, 3], [4, 5, 6]]) # 标准差 std = tang_array.std() print(std) ~~~ 输出 `1.70782512766` # 求方差 ~~~ # 方差 var = tang_array.var() print(var) ~~~ 输出 `2.91666666667` # 输出限制 ~~~ import numpy as np tang_array = np.array([[1, 2, 3], [4, 5, 6]]) # 小于2的值变为2,大于4的值变为4 clip = tang_array.clip(2, 4) print(clip) ~~~ 输出 ~~~ [[2 2 3] [4 4 4]] ~~~ # 四舍五入 ~~~ import numpy as np tang_array = np.array([[1, 2, 3.1, 4.6, 6.1]]) # 四舍五入 array_round = tang_array.round() print(array_round) ~~~ 输出 ~~~ [[ 1. 2. 3. 5. 6.]] ~~~ 设置保留精度 ~~~ import numpy as np tang_array = np.array([[1.23, 2.67, 3.12, 4.6, 6.1]]) array_round = tang_array.round(decimals=1) print(array_round) ~~~ 输出 ~~~ [[ 1.2 2.7 3.1 4.6 6.1]] ~~~