[TOC]
# 简介
由于线程是操作系统直接支持的执行单元,因此,高级语言通常都内置多线程的支持,Python也不例外,并且,Python的线程是真正的Posix Thread,而不是模拟出来的线程.
Python的标准库提供了两个模块:`_thread`和threading,`_thread`是低级模块,threading是高级模块,对_thread进行了封装。绝大多数情况下,我们只需要使用threading这个高级模块
启动一个线程就是把一个函数传入并创建Thread实例,然后调用start()开始执行
# 线程名字
由于任何进程默认就会启动一个线程,我们把该线程称为主线程,主线程又可以启动新的线程,Python的threading模块有个`current_thread()`函数,它永远返回当前线程的实例。主线程实例的名字叫MainThread.
子线程的名字在创建时指定,我们用LoopThread命名子线程。名字仅仅在打印时用来显示,完全没有其他意义,如果不起名字Python就自动给线程命名为Thread-1,Thread-2……
# 常用方法
在一个新线程中运行loop方法,线程名字叫LoopThread,args表示给这个方法传递参数
~~~
threading.Thread(target=loop, name='LoopThread', args=(g_nums, ))
~~~
当前线程的名字
~~~
threading.current_thread().name
~~~
查看线程的数量
~~~
len(threading.enumerate())
~~~
# 多线程,函数函数
~~~
import threading
# 新线程执行的代码:
def loop():
print('thread %s is running...' % threading.current_thread().name)
print('thread %s is running...' % threading.current_thread().name)
t = threading.Thread(target=loop, name='LoopThread')
# 启动线程
t.start()
~~~
当调用start()时,才会真正的创建线程,并开始执行
# 查看线程的数量
~~~
import threading
# 新线程执行的代码:
def loop():
print('thread %s is running...' % threading.current_thread().name)
print('thread %s is running...' % threading.current_thread().name)
t1 = threading.Thread(target=loop, name='t1')
t2 = threading.Thread(target=loop, name='t2')
t1.start()
t2.start()
length = len(threading.enumerate())
print('当前运行的线程数为 : %d' %length)
~~~
# 多线程,对象方式
~~~
import threading, time
class MyThread(threading.Thread):
def run(self):
for i in range(3):
time.sleep(1)
msg = "I'm " + self.name + ' @ ' + str(i) # name属性中保存的是当前线程的名字
print(msg)
if __name__ == '__main__':
t = MyThread()
# start会自动执行run方法
t.start()
~~~
# lock
**常用方法**
~~~
# 创建锁
mutex = threading.Lock()
# 锁定
mutex.acquire()
# 释放
mutex.release()
~~~
**注意**
* 如果这个锁之前是没有上锁的,那么acquire不会阻塞
* 如果在调用acquire对这个锁上锁之前,它已经被其他线程上了锁,那么此时acquire锁被解锁为止
# 多核CPU
如果你不幸拥有一个多核CPU,你肯定在想,多核应该可以同时执行多个线程。
如果写一个死循环的话,会出现什么情况呢?
打开Mac OS X的Activity Monitor,或者Windows的Task Manager,都可以监控某个进程的CPU使用率。
我们可以监控到一个死循环线程会100%占用一个CPU。
如果有两个死循环线程,在多核CPU中,可以监控到会占用200%的CPU,也就是占用两个CPU核心。
要想把N核CPU的核心全部跑满,就必须启动N个死循环线程。
试试用Python写个死循环:
~~~
import threading, multiprocessing
def loop():
x = 0
while True:
x = x ^ 1
for i in range(multiprocessing.cpu_count()):
t = threading.Thread(target=loop)
t.start()
~~~
启动与CPU核心数量相同的N个线程,在4核CPU上可以监控到CPU占用率仅有102%,也就是仅使用了一核。
但是用C、C++或Java来改写相同的死循环,直接可以把全部核心跑满,4核就跑到400%,8核就跑到800%,为什么Python不行呢?
因为Python的线程虽然是真正的线程,但解释器执行代码时,有一个GIL锁:Global Interpreter Lock,任何Python线程执行前,必须先获得GIL锁,然后,每执行100条字节码,解释器就自动释放GIL锁,让别的线程有机会执行。这个GIL全局锁实际上把所有线程的执行代码都给上了锁,所以,多线程在Python中只能交替执行,即使100个线程跑在100核CPU上,也只能用到1个核。
GIL是Python解释器设计的历史遗留问题,通常我们用的解释器是官方实现的CPython,要真正利用多核,除非重写一个不带GIL的解释器。
所以,在Python中,可以使用多线程,但不要指望能有效利用多核。如果一定要通过多线程利用多核,那只能通过C扩展来实现,不过这样就失去了Python简单易用的特点。
不过,也不用过于担心,Python虽然不能利用多线程实现多核任务,但可以通过多进程实现多核任务。多个Python进程有各自独立的GIL锁,互不影响
- python入门
- 软件安装
- anaconda使用
- py解释器
- 数据类型和变量
- 编码
- 字符串
- 格式化
- 数据类型
- 运算符
- list和tuple
- 列表生成式
- dict和set
- 切片和迭代
- set,list,tuple之间互换
- is和==
- 公共方法
- 反射操作
- 数学运算
- 类型转换
- 对象操作
- 序列操作
- 运算符
- 内置函数
- 交互操作
- 编译执行
- 引用
- 判断,循环
- 生成器
- 迭代器
- 函数
- 数据类型转换
- 空函数
- 参数
- 全局变量
- 返回值
- 递归
- 匿名函数
- 文件操作
- 打开和关闭
- 读写
- 备份文件
- 文件定位读写
- 重命名,删除
- 文件夹相关操作
- with
- StringIO和BytesIO
- 操作文件和目录
- 序列化
- 文件属性
- 面向对象
- 类和对象
- init()方法
- 魔法方法
- 继承
- 重写
- 多态
- 类属性,实例属性
- 静态方法和类方法
- 工厂模式
- 单例模式
- 异常
- 私有化
- 获取对象信息
- *args和**kwargs
- property属性
- 元类
- slots
- 定制类
- 枚举
- 模块
- 模块介绍
- 模块中的__name__
- 模块中的__all__
- 包
- 模块发布
- 模块的安装和使用
- 多模块开发
- 标准库
- 给程序传参数
- 时间
- 正则表达式
- GIL
- 深拷贝和浅拷贝
- 单元测试
- pyqt
- 安装
- 设置窗口图标和移动窗口
- 设置气泡提示和文本
- 图片展示
- 文本框控件
- 按钮控件
- 信号和槽
- 布局
- 对话框控件
- pygame
- 窗体关闭事件
- 显示图片
- 移动图片
- 文本显示
- 背景音和音效
- FPS计算
- surface
- 鼠标事件
- 函数式编程
- map/reduce
- filter
- sorted
- 返回函数
- 装饰器
- 偏函数
- 网络编程
- tcp
- udp
- socket
- epoll
- WSGI
- 多任务
- 多线程
- 多进程
- 分布式进程
- 协程
- 迭代器
- 生成器
- yield多任务
- greenlet
- gevent
- ThreadLocal
- asyncio
- async/await
- aiohttp
- 常用内建模块
- datetime
- collections
- base64
- struct
- hashlib
- hmac
- itertools
- urllib
- xml
- HTMLParser
- 常用第三方模块
- pillow
- requests
- chardet
- psutil
- 图形界面
- 海龟绘图
- Django
- 虚拟环境搭建
- ORM
- 模型类设计和表生成
- 模型类操作
- 关系查询
- 后台管理
- 配置mysql
- 字段属性和选项
- 查询
- 模型关联
- 路由
- 模板
- selenium
- 基本原理
- api
- 八种定位方式
- 元素的操作
- 多标签
- 多表单
- 鼠标,键盘
- 警告框
- 下拉框
- 执行js
- 等待
- cookie
- 封装
- unittest模块
- 断言
- 测试用例
- jmeter
- jmeter简介
- jmeter提取json
- 添加header和cookie
- 读取csv/txt文件
- 配置文件
- ant