ThinkChat2.0新版上线,更智能更精彩,支持会话、画图、阅读、搜索等,送10W Token,即刻开启你的AI之旅 广告
[TOC] # 简介 利用迭代器,我们可以在每次迭代获取数据(通过next()方法)时,按照特定的规律进行生成.但是我们在实现一个迭代器时,关于当前迭代到的状态需要我们自己记录,进而才能根据当前状态生成下一个数据.为了达到当前状态,并配合next()函数进行迭代使用,我们可以采用更简便的语法,即生成器(generator).生成器是一类特殊的迭代器 # 分析 通过列表生成式,我们可以直接创建一个列表。但是,受到内存限制,列表容量肯定是有限的。而且,创建一个包含100万个元素的列表,不仅占用很大的存储空间,如果我们仅仅需要访问前面几个元素,那后面绝大多数元素占用的空间都白白浪费了。 所以,如果列表元素可以按照某种算法推算出来,那我们是否可以在循环的过程中不断推算出后续的元素呢?这样就不必创建完整的list,从而节省大量的空间。在Python中,这种一边循环一边计算的机制,称为生成器:generator。 # 创建生成器 要创建一个generator,有很多种方法。第一种方法很简单,只要把一个列表生成式的`[]`改成(),就创建了一个generator: ~~~ >>> L = [x * x for x in range(10)] >>> L [0, 1, 4, 9, 16, 25, 36, 49, 64, 81] >>> g = (x * x for x in range(10)) >>> g <generator object <genexpr> at 0x1022ef630> ~~~ # next 创建L和g的区别仅在于最外层的`[]`和(),L是一个list,而g是一个generator。 我们可以直接打印出list的每一个元素,但我们怎么打印出generator的每一个元素呢? 如果要一个一个打印出来,可以通过next()函数获得generator的下一个返回值: ~~~ >>> next(g) 0 >>> next(g) 1 >>> next(g) 4 >>> next(g) 9 >>> next(g) 16 >>> next(g) 25 >>> next(g) 36 >>> next(g) 49 >>> next(g) 64 >>> next(g) 81 >>> next(g) Traceback (most recent call last): File "<stdin>", line 1, in <module> StopIteration ~~~ generator保存的是算法,每次调用next(g),就计算出g的下一个元素的值,直到计算到最后一个元素,没有更多的元素时,抛出StopIteration的错误。 # for 当然,上面这种不断调用next(g)实在是太变态了,正确的方法是使用for循环,因为generator也是可迭代对象: ~~~ >>> g = (x * x for x in range(10)) >>> for n in g: ... print(n) ... 0 1 4 9 16 25 36 49 64 81 ~~~ 所以,我们创建了一个generator后,基本上永远不会调用next(),而是通过for循环来迭代它,并且不需要关心StopIteration的错误。 # 斐波拉契数列 generator非常强大。如果推算的算法比较复杂,用类似列表生成式的for循环无法实现的时候,还可以用函数来实现。 比如,著名的斐波拉契数列(Fibonacci),除第一个和第二个数外,任意一个数都可由前两个数相加得到: ~~~ 1, 1, 2, 3, 5, 8, 13, 21, 34, ... ~~~ 斐波拉契数列用列表生成式写不出来,但是,用函数把它打印出来却很容易: ~~~ def fib(max): n, a, b = 0, 0, 1 while n < max: print(b) a, b = b, a + b n = n + 1 return 'done' ~~~ 注意,赋值语句(=号): ~~~ a, b = b, a + b ~~~ 相当于: ~~~ t = (b, a + b) # t是一个tuple a = t[0] b = t[1] ~~~ 但不必显式写出临时变量t就可以赋值。 上面的函数可以输出斐波那契数列的前N个数: ~~~ >>> fib(6) 1 1 2 3 5 8 'done' ~~~ 仔细观察,可以看出,fib函数实际上是定义了斐波拉契数列的推算规则,可以从第一个元素开始,推算出后续任意的元素,这种逻辑其实非常类似generator # yield 上面的函数和generator仅一步之遥。要把fib函数变成generator,只需要把print(b)改为yield b就可以了: ~~~ def fib(max): n, a, b = 0, 0, 1 while n < max: yield b a, b = b, a + b n = n + 1 return 'done' ~~~ 这就是定义generator的另一种方法。如果一个函数定义中包含yield关键字,那么这个函数就不再是一个普通函数,而是一个generator: ~~~ >>> f = fib(6) >>> f <generator object fib at 0x104feaaa0> ~~~ 这里,最难理解的就是generator和函数的执行流程不一样。函数是顺序执行,遇到return语句或者最后一行函数语句就返回。而变成generator的函数,在每次调用next()的时候执行,遇到yield语句返回,再次执行时从上次返回的yield语句处继续执行。 举个简单的例子,定义一个generator,依次返回数字1,3,5: ~~~ def odd(): print('step 1') yield 1 print('step 2') yield(3) print('step 3') yield(5) ~~~ 调用该generator时,首先要生成一个generator对象,然后用next()函数不断获得下一个返回值: ~~~ >>> o = odd() >>> next(o) step 1 1 >>> next(o) step 2 3 >>> next(o) step 3 5 >>> next(o) Traceback (most recent call last): File "<stdin>", line 1, in <module> StopIteration ~~~ 可以看到,odd不是普通函数,而是generator,在执行过程中,遇到yield就中断,下次又继续执行。执行3次yield后,已经没有yield可以执行了,所以,第4次调用next(o)就报错。 回到fib的例子,我们在循环过程中不断调用yield,就会不断中断。当然要给循环设置一个条件来退出循环,不然就会产生一个无限数列出来。 同样的,把函数改成generator后,我们基本上从来不会用next()来获取下一个返回值,而是直接使用for循环来迭代: ~~~ >>> for n in fib(6): ... print(n) ... 1 1 2 3 5 8 ~~~ 但是用for循环调用generator时,发现拿不到generator的return语句的返回值。如果想要拿到返回值,必须捕获StopIteration错误,返回值包含在StopIteration的value中: ~~~ >>> g = fib(6) >>> while True: ... try: ... x = next(g) ... print('g:', x) ... except StopIteration as e: ... print('Generator return value:', e.value) ... break ... g: 1 g: 1 g: 2 g: 3 g: 5 g: 8 Generator return value: done ~~~ # send发送数据 用send给yield发送数据 ~~~ def create_num(all_num): a, b = 0, 1 current_num = 0 while current_num < all_num: ret = yield a print('ret>>>', ret) a, b = b, a+b current_num += 1 obj = create_num(10) # 一般不在初始next前调用send,程序会报错,非要send就传None吧 # obj.send(None) ret = next(obj) print(ret) # 把数据发给yield ret = obj.send('test') print(ret) ~~~