多应用+插件架构,代码干净,二开方便,首家独创一键云编译技术,文档视频完善,免费商用码云13.8K 广告
[TOC] # map map()函数接收两个参数,一个是函数,一个是Iterable,map将传入的函数依次作用到序列的每个元素,并把结果作为新的Iterator返回 比如我们有一个函数f(x)=x2,要把这个函数作用在一个list [1, 2, 3, 4, 5, 6, 7, 8, 9]上,就可以用map()实现如下 ![](https://box.kancloud.cn/3d666e24e4fda7ed128af020f41252bd_277x193.png) ~~~ >>> def f(x): ... return x * x ... >>> r = map(f, [1, 2, 3, 4, 5, 6, 7, 8, 9]) >>> list(r) [1, 4, 9, 16, 25, 36, 49, 64, 81] ~~~ map()传入的第一个参数是f,即函数对象本身。由于结果r是一个Iterator,Iterator是惰性序列,因此通过list()函数让它把整个序列都计算出来并返回一个list map()作为高阶函数,事实上它把运算规则抽象了,因此,我们不但可以计算简单的f(x)=x2,还可以计算任意复杂的函数,比如,把这个list所有数字转为字符串: ~~~ >>> list(map(str, [1, 2, 3, 4, 5, 6, 7, 8, 9])) ['1', '2', '3', '4', '5', '6', '7', '8', '9'] ~~~ # reduce reduce把一个函数作用在一个序列`[x1, x2, x3, ...]`上,这个函数必须接收两个参数,reduce把结果继续和序列的下一个元素做累积计算,其效果就是 ~~~ reduce(f, [x1, x2, x3, x4]) = f(f(f(x1, x2), x3), x4) ~~~ 比方说对一个序列求和,就可以用reduce实现: ~~~ >>> from functools import reduce >>> def add(x, y): ... return x + y ... >>> reduce(add, [1, 3, 5, 7, 9]) 25 ~~~ 如果考虑到字符串**str也是一个序列**,对上面的例子稍加改动,配合map(),我们就可以写出把str转换为int的函数 ~~~ >>> from functools import reduce >>> def fn(x, y): ... return x * 10 + y ... >>> def char2num(s): ... digits = {'0': 0, '1': 1, '2': 2, '3': 3, '4': 4, '5': 5, '6': 6, '7': 7, '8': 8, '9': 9} ... return digits[s] ... >>> reduce(fn, map(char2num, '13579')) 13579 ~~~