[TOC]
collections是Python内建的一个集合模块,提供了许多有用的集合类
# namedtuple
我们知道tuple可以表示不变集合,例如,一个点的二维坐标就可以表示成:
~~~
>>> p = (1, 2)
~~~
但是,看到(1, 2),很难看出这个tuple是用来表示一个坐标的。
定义一个class又小题大做了,这时,namedtuple就派上了用场:
~~~
>>> from collections import namedtuple
>>> Point = namedtuple('Point', ['x', 'y'])
>>> p = Point(1, 2)
>>> p.x
1
>>> p.y
2
~~~
namedtuple是一个函数,它用来创建一个自定义的tuple对象,并且规定了tuple元素的个数,并可以用属性而不是索引来引用tuple的某个元素。
这样一来,我们用namedtuple可以很方便地定义一种数据类型,它具备tuple的不变性,又可以根据属性来引用,使用十分方便。
可以验证创建的Point对象是tuple的一种子类:
~~~
>>> isinstance(p, Point)
True
>>> isinstance(p, tuple)
True
~~~
类似的,如果要用坐标和半径表示一个圆,也可以用namedtuple定义:
~~~
# namedtuple('名称', [属性list]):
Circle = namedtuple('Circle', ['x', 'y', 'r'])
~~~
# deque
使用list存储数据时,按索引访问元素很快,但是插入和删除元素就很慢了,因为list是线性存储,数据量大的时候,插入和删除效率很低。
deque是为了高效实现插入和删除操作的双向列表,适合用于队列和栈:
~~~
>>> from collections import deque
>>> q = deque(['a', 'b', 'c'])
>>> q.append('x')
>>> q.appendleft('y')
>>> q
deque(['y', 'a', 'b', 'c', 'x'])
~~~
deque除了实现list的append()和pop()外,还支持appendleft()和popleft(),这样就可以非常高效地往头部添加或删除元素
# defaultdict
使用dict时,如果引用的Key不存在,就会抛出KeyError。如果希望key不存在时,返回一个默认值,就可以用defaultdict:
~~~
>>> from collections import defaultdict
>>> dd = defaultdict(lambda: 'N/A')
>>> dd['key1'] = 'abc'
>>> dd['key1'] # key1存在
'abc'
>>> dd['key2'] # key2不存在,返回默认值
'N/A'
~~~
注意默认值是调用函数返回的,而函数在创建defaultdict对象时传入。
除了在Key不存在时返回默认值,defaultdict的其他行为跟dict是完全一样的
# OrderedDict
使用dict时,Key是无序的。在对dict做迭代时,我们无法确定Key的顺序。
如果要保持Key的顺序,可以用OrderedDict:
~~~
>>> from collections import OrderedDict
>>> d = dict([('a', 1), ('b', 2), ('c', 3)])
>>> d # dict的Key是无序的
{'a': 1, 'c': 3, 'b': 2}
>>> od = OrderedDict([('a', 1), ('b', 2), ('c', 3)])
>>> od # OrderedDict的Key是有序的
OrderedDict([('a', 1), ('b', 2), ('c', 3)])
~~~
注意,OrderedDict的Key会按照插入的顺序排列,不是Key本身排序:
~~~
>>> od = OrderedDict()
>>> od['z'] = 1
>>> od['y'] = 2
>>> od['x'] = 3
>>> list(od.keys()) # 按照插入的Key的顺序返回
['z', 'y', 'x']
~~~
OrderedDict可以实现一个FIFO(先进先出)的dict,当容量超出限制时,先删除最早添加的Key:
~~~
from collections import OrderedDict
class LastUpdatedOrderedDict(OrderedDict):
def __init__(self, capacity):
super(LastUpdatedOrderedDict, self).__init__()
self._capacity = capacity
def __setitem__(self, key, value):
containsKey = 1 if key in self else 0
if len(self) - containsKey >= self._capacity:
last = self.popitem(last=False)
print('remove:', last)
if containsKey:
del self[key]
print('set:', (key, value))
else:
print('add:', (key, value))
OrderedDict.__setitem__(self, key, value)
~~~
# ChainMap
ChainMap可以把一组dict串起来并组成一个逻辑上的dict。ChainMap本身也是一个dict,但是查找的时候,会按照顺序在内部的dict依次查找。
什么时候使用ChainMap最合适?举个例子:应用程序往往都需要传入参数,参数可以通过命令行传入,可以通过环境变量传入,还可以有默认参数。我们可以用ChainMap实现参数的优先级查找,即先查命令行参数,如果没有传入,再查环境变量,如果没有,就使用默认参数。
下面的代码演示了如何查找user和color这两个参数:
~~~
from collections import ChainMap
import os, argparse
# 构造缺省参数:
defaults = {
'color': 'red',
'user': 'guest'
}
# 构造命令行参数:
parser = argparse.ArgumentParser()
parser.add_argument('-u', '--user')
parser.add_argument('-c', '--color')
namespace = parser.parse_args()
command_line_args = { k: v for k, v in vars(namespace).items() if v }
# 组合成ChainMap:
combined = ChainMap(command_line_args, os.environ, defaults)
# 打印参数:
print('color=%s' % combined['color'])
print('user=%s' % combined['user'])
~~~
没有任何参数时,打印出默认参数:
~~~
$ python3 use_chainmap.py
color=red
user=guest
~~~
当传入命令行参数时,优先使用命令行参数:
~~~
$ python3 use_chainmap.py -u bob
color=red
user=bob
~~~
同时传入命令行参数和环境变量,命令行参数的优先级较高:
~~~
$ user=admin color=green python3 use_chainmap.py -u bob
color=green
user=bob
~~~
# Counter
Counter是一个简单的计数器,例如,统计字符出现的个数:
~~~
>>> from collections import Counter
>>> c = Counter()
>>> for ch in 'programming':
... c[ch] = c[ch] + 1
...
>>> c
Counter({'g': 2, 'm': 2, 'r': 2, 'a': 1, 'i': 1, 'o': 1, 'n': 1, 'p': 1})
~~~
Counter实际上也是dict的一个子类,上面的结果可以看出,字符'g'、'm'、'r'各出现了两次,其他字符各出现了一次
- python入门
- 软件安装
- anaconda使用
- py解释器
- 数据类型和变量
- 编码
- 字符串
- 格式化
- 数据类型
- 运算符
- list和tuple
- 列表生成式
- dict和set
- 切片和迭代
- set,list,tuple之间互换
- is和==
- 公共方法
- 反射操作
- 数学运算
- 类型转换
- 对象操作
- 序列操作
- 运算符
- 内置函数
- 交互操作
- 编译执行
- 引用
- 判断,循环
- 生成器
- 迭代器
- 函数
- 数据类型转换
- 空函数
- 参数
- 全局变量
- 返回值
- 递归
- 匿名函数
- 文件操作
- 打开和关闭
- 读写
- 备份文件
- 文件定位读写
- 重命名,删除
- 文件夹相关操作
- with
- StringIO和BytesIO
- 操作文件和目录
- 序列化
- 文件属性
- 面向对象
- 类和对象
- init()方法
- 魔法方法
- 继承
- 重写
- 多态
- 类属性,实例属性
- 静态方法和类方法
- 工厂模式
- 单例模式
- 异常
- 私有化
- 获取对象信息
- *args和**kwargs
- property属性
- 元类
- slots
- 定制类
- 枚举
- 模块
- 模块介绍
- 模块中的__name__
- 模块中的__all__
- 包
- 模块发布
- 模块的安装和使用
- 多模块开发
- 标准库
- 给程序传参数
- 时间
- 正则表达式
- GIL
- 深拷贝和浅拷贝
- 单元测试
- pyqt
- 安装
- 设置窗口图标和移动窗口
- 设置气泡提示和文本
- 图片展示
- 文本框控件
- 按钮控件
- 信号和槽
- 布局
- 对话框控件
- pygame
- 窗体关闭事件
- 显示图片
- 移动图片
- 文本显示
- 背景音和音效
- FPS计算
- surface
- 鼠标事件
- 函数式编程
- map/reduce
- filter
- sorted
- 返回函数
- 装饰器
- 偏函数
- 网络编程
- tcp
- udp
- socket
- epoll
- WSGI
- 多任务
- 多线程
- 多进程
- 分布式进程
- 协程
- 迭代器
- 生成器
- yield多任务
- greenlet
- gevent
- ThreadLocal
- asyncio
- async/await
- aiohttp
- 常用内建模块
- datetime
- collections
- base64
- struct
- hashlib
- hmac
- itertools
- urllib
- xml
- HTMLParser
- 常用第三方模块
- pillow
- requests
- chardet
- psutil
- 图形界面
- 海龟绘图
- Django
- 虚拟环境搭建
- ORM
- 模型类设计和表生成
- 模型类操作
- 关系查询
- 后台管理
- 配置mysql
- 字段属性和选项
- 查询
- 模型关联
- 路由
- 模板
- selenium
- 基本原理
- api
- 八种定位方式
- 元素的操作
- 多标签
- 多表单
- 鼠标,键盘
- 警告框
- 下拉框
- 执行js
- 等待
- cookie
- 封装
- unittest模块
- 断言
- 测试用例
- jmeter
- jmeter简介
- jmeter提取json
- 添加header和cookie
- 读取csv/txt文件
- 配置文件
- ant