在IO编程一节中,我们已经知道,CPU的速度远远快于磁盘、网络等IO。在一个线程中,CPU执行代码的速度极快,然而,一旦遇到IO操作,如读写文件、发送网络数据时,就需要等待IO操作完成,才能继续进行下一步操作。这种情况称为同步IO。
在IO操作的过程中,当前线程被挂起,而其他需要CPU执行的代码就无法被当前线程执行了。
因为一个IO操作就阻塞了当前线程,导致其他代码无法执行,所以我们必须使用多线程或者多进程来并发执行代码,为多个用户服务。每个用户都会分配一个线程,如果遇到IO导致线程被挂起,其他用户的线程不受影响。
多线程和多进程的模型虽然解决了并发问题,但是系统不能无上限地增加线程。由于系统切换线程的开销也很大,所以,一旦线程数量过多,CPU的时间就花在线程切换上了,真正运行代码的时间就少了,结果导致性能严重下降。
由于我们要解决的问题是CPU高速执行能力和IO设备的龟速严重不匹配,多线程和多进程只是解决这一问题的一种方法。
另一种解决IO问题的方法是异步IO。当代码需要执行一个耗时的IO操作时,它只发出IO指令,并不等待IO结果,然后就去执行其他代码了。一段时间后,当IO返回结果时,再通知CPU进行处理。
可以想象如果按普通顺序写出的代码实际上是没法完成异步IO的:
~~~
do_some_code()
f = open('/path/to/file', 'r')
r = f.read() # <== 线程停在此处等待IO操作结果
# IO操作完成后线程才能继续执行:
do_some_code(r)
~~~
所以,同步IO模型的代码是无法实现异步IO模型的。
异步IO模型需要一个消息循环,在消息循环中,主线程不断地重复“读取消息-处理消息”这一过程:
~~~
loop = get_event_loop()
while True:
event = loop.get_event()
process_event(event)
~~~
消息模型其实早在应用在桌面应用程序中了。一个GUI程序的主线程就负责不停地读取消息并处理消息。所有的键盘、鼠标等消息都被发送到GUI程序的消息队列中,然后由GUI程序的主线程处理。
由于GUI线程处理键盘、鼠标等消息的速度非常快,所以用户感觉不到延迟。某些时候,GUI线程在一个消息处理的过程中遇到问题导致一次消息处理时间过长,此时,用户会感觉到整个GUI程序停止响应了,敲键盘、点鼠标都没有反应。这种情况说明在消息模型中,处理一个消息必须非常迅速,否则,主线程将无法及时处理消息队列中的其他消息,导致程序看上去停止响应。
消息模型是如何解决同步IO必须等待IO操作这一问题的呢?当遇到IO操作时,代码只负责发出IO请求,不等待IO结果,然后直接结束本轮消息处理,进入下一轮消息处理过程。当IO操作完成后,将收到一条“IO完成”的消息,处理该消息时就可以直接获取IO操作结果。
在“发出IO请求”到收到“IO完成”的这段时间里,同步IO模型下,主线程只能挂起,但异步IO模型下,主线程并没有休息,而是在消息循环中继续处理其他消息。这样,在异步IO模型下,一个线程就可以同时处理多个IO请求,并且没有切换线程的操作。对于大多数IO密集型的应用程序,使用异步IO将大大提升系统的多任务处理能力。
>[info]评论中网友的辅助理解部分:
I/O模型,同步异步,阻塞非阻塞是些概念困扰了我很长时间.
能上图就好了,一图胜千言.
图在UNIX网络编程 第三版 卷1 中文盗版 第六章
图6-6 5种I/O模型的比较
UNIX有5种I/O模型,阻塞会发生在两个阶段上:
1.阻塞式I/O 等待数据时阻塞 数据从内核复制到用户空间时阻塞
2.非阻塞式I/O 等待数据不阻塞,但是轮询会占用cpu资源 数据从内核复制到用户空间时阻塞
3.I/O复用 考虑到轮询占用cpu资源的问题,阻塞在选择器上,减轻处理器负担 将数据从内核复制到用户空间时阻塞
4.信号驱动式I/O 等待数据不阻塞,数据准备好时通知接收数据,将数据从内核复制到用户空间时阻塞
以上四种或多或少均有阻塞现象存在,它们都是同步I/O模型
5.异步I/O 等待数据时不阻塞 将数据从内核复制到用户空间时也不阻塞. 数据到了用户空间以后才发信号,就像你在网上下了订单,快递员拿着你的快件站在你家门口才通知你开门签收的样子.
而在网上下了订单,货物到了离你家最近的自提点,商城通知你去自提点取提货.你专门抽出时间去提货.这是4.信号驱动式I/O.因为在来回自提点的路上你其实是阻塞的.
![image](http://p1.bqimg.com/1949/42be1fada33e98d6.png)
- Python教程
- Python简介
- 安装Python
- Python解释器
- 第一个 Python 程序
- 使用文本编辑器
- Python代码运行助手
- 输入和输出
- 源码
- learning.py
- Python基础
- 数据类型和变量
- 字符串和编码
- 使用list和tuple
- 条件判断
- 循环
- 使用dict和set
- 函数
- 调用函数
- 定义函数
- 函数的参数
- 递归函数
- 高级特性
- 切片
- 迭代
- 列表生成式
- 生成器
- 迭代器
- 函数式编程
- 高阶函数
- map/reduce
- filter
- sorted
- 返回函数
- 匿名函数
- 装饰器
- 偏函数
- Python函数式编程——偏函数(来自博客)
- 模块
- 使用模块
- 安装第三方模块
- 面向对象编程
- 类和实例
- 访问限制
- 继承和多态
- 获取对象信息
- 实例属性和类属性
- 面向对象高级编程
- 使用__slots__
- 使用@property
- 多重继承
- 定制类
- 使用枚举类
- 使用元类
- 错误、调试和测试
- 错误处理
- 调试
- 单元测试
- 文档测试
- IO编程
- 文件读写
- StringIO和BytesIO
- 操作文件和目录
- 序列化
- 进程和线程
- 多进程
- 多线程
- ThreadLocal
- 进程 vs. 线程
- 分布式进程
- 正则表达式
- 常用内建模块
- datetime
- collections
- base64
- struct
- hashlib
- itertools
- contextlib
- XML
- HTMLParser
- urllib
- 常用第三方模块
- PIL
- virtualenv
- 图形界面
- 网络编程
- TCP/IP简介
- TCP编程
- UDP编程
- 电子邮件
- SMTP发送邮件
- POP3收取邮件
- 访问数据库
- 使用SQLite
- 使用MySQL
- 使用SQLAlchemy
- Web开发
- HTTP协议简介
- HTML简介
- WSGI接口
- 使用Web框架
- 使用模板
- 异步IO
- 协程
- asyncio
- async/await
- aiohttp
- 实战
- Day 1 - 搭建开发环境
- Day 2 - 编写Web App骨架
- Day 3 - 编写ORM
- Day 4 - 编写Model
- Day 5 - 编写Web框架
- Day 6 - 编写配置文件
- Day 7 - 编写MVC
- Day 8 - 构建前端
- Day 9 - 编写API
- Day 10 - 用户注册和登录
- Day 11 - 编写日志创建页
- Day 12 - 编写日志列表页
- Day 13 - 提升开发效率
- Day 14 - 完成Web App
- Day 15 - 部署Web App
- Day 16 - 编写移动App
- FAQ
- 期末总结