### 1. 分析请求
分析网址:[https://m.weibo.cn/u/2145291155](https://m.weibo.cn/u/2145291155)
### ![](/assets/6.3-1.png)
### 2. 分析响应
链接:[https://m.weibo.cn/api/container/getIndex?type=uid&value=2145291155&containerid=1076032145291155](https://m.weibo.cn/api/container/getIndex?type=uid&value=2145291155&containerid=1076032145291155)
![](/assets/6.3-2.png)
下一条链接:[https://m.weibo.cn/api/container/getIndex?type=uid&value=2145291155&containerid=1076032145291155&page=2](https://m.weibo.cn/api/container/getIndex?type=uid&value=2145291155&containerid=1076032145291155&page=2)
可以后面多了一个page=2的参数
根据后面的链接可以发现page就是页数,value参数值是用户id,containerid参数值是1076032+用户id
### 3. 实战演练 {#3-实战演练}
```
from urllib.parse import urlencode
import requests
from pyquery import PyQuery as pq
from pymongo import MongoClient
headers = {
'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8',
'Referer': 'https://germey.gitbooks.io/python3webspider/content/6.3-Ajax%E7%BB%93%E6%9E%9C%E6%8F%90%E5%8F%96.html',
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/68.0.3440.84 Safari/537.36',
'X-Requested-With': 'XMLHttpRequest',
}
client = MongoClient()
db = client.weibo
collection = db.weio
max_page = 10
base_url = "https://m.weibo.cn/api/container/getIndex?"
def get_page(page=0):
params = {
'type':'uid',
'value':'2145291155',
'containerid':'1076032145291155',
'page':page,
}
url = base_url + urlencode(params)
# print(url)
try:
response = requests.get(url,headers=headers)
if response.status_code == 200:
return response.json()
except requests.ConnectionError as e:
print(e.args)
def parse_page(response):
print(response)
if response:
items = response.get("data").get("cards")
print(items)
if items:
for item in items:
item = item.get("mblog")
weibo = {}
weibo.setdefault("id",item.get("id"))
weibo.setdefault("text",item.get("text"))
weibo.setdefault("attitudes",item.get("attitudes_count"))
weibo.setdefault("comments",item.get("comments_count"))
weibo.setdefault("reposts",item.get("reposts_count"))
yield weibo
def save_to_mongo(result):
if collection.insert(result):
print("Save to Mongo")
if __name__ == "__main__":
for page in range(1,max_page+1):
response = get_page(page)
results = parse_page(response)
for result in results:
print(result)
save_to_mongo(result)
```
- 介绍
- 1.开发环境配置
- 1.1 python3的安装
- 1.1.1 windows下的安装
- 1.1.2 Linux下的安装
- 1.1.3 Mac下的安装
- 1.2 请求库的安装
- 1.2.1 requests的安装
- 1.2.2 selenium的安装
- 1.2.3 ChromeDriver的安装
- 1.2.4 GeckoDriver 的安装
- 1.2.5 PhantomJS的安装
- 1.2.6 aiohttp的安装
- 1.3 解析库的安装
- 1.3.1 lxml的安装
- 1.3.2 Beautiful Soup的安装
- 1.3.3 pyquery的安装
- 1.3.4 tesserocr的安装
- 1.4 数据库的安装
- 1.4.1 MySQL的安装
- 1.4.2 MongoDB的安装
- 1.4.3 Redis的安装
- 1.5 存储库的安装
- 1.5.1 PyMySQL的安装
- 1.5.2 PyMongo的安装
- 1.5.3 redis-py的安装
- 1.5.4 RedisDump的安装
- 1.6 Web库的安装
- 1.6.1 Flask的安装
- 1.6.2 Tornado的安装
- 1.7 App爬取相关库的安装
- 1.7.1 Charles的安装
- 1.7.2 mitmproxy的安装
- 1.7.3 Appium的安装
- 1.8 爬虫框架的安装
- 1.8.1 pyspider的安装
- 1.8.2 Scrapy的安装
- 1.8.3 Scrapy-Splash的安装
- 1.8.4 ScrapyRedis的安装
- 1.9 布署相关库的安装
- 1.9.1 Docker的安装
- 1.9.2 Scrapyd的安装
- 1.9.3 ScrapydClient的安装
- 1.9.4 ScrapydAPI的安装
- 1.9.5 Scrapyrt的安装
- 1.9.6-Gerapy的安装
- 2.爬虫基础
- 2.1 HTTP 基本原理
- 2.1.1 URI和URL
- 2.1.2 超文本
- 2.1.3 HTTP和HTTPS
- 2.1.4 HTTP请求过程
- 2.1.5 请求
- 2.1.6 响应
- 2.2 网页基础
- 2.2.1网页的组成
- 2.2.2 网页的结构
- 2.2.3 节点树及节点间的关系
- 2.2.4 选择器
- 2.3 爬虫的基本原理
- 2.3.1 爬虫概述
- 2.3.2 能抓怎样的数据
- 2.3.3 javascript渲染的页面
- 2.4 会话和Cookies
- 2.4.1 静态网页和动态网页
- 2.4.2 无状态HTTP
- 2.4.3 常见误区
- 2.5 代理的基本原理
- 2.5.1 基本原理
- 2.5.2 代理的作用
- 2.5.3 爬虫代理
- 2.5.4 代理分类
- 2.5.5 常见代理设置
- 3.基本库使用
- 3.1 使用urllib
- 3.1.1 发送请求
- 3.1.2 处理异常
- 3.1.3 解析链接
- 3.1.4 分析Robots协议
- 3.2 使用requests
- 3.2.1 基本用法
- 3.2.2 高级用法
- 3.3 正则表达式
- 3.4 抓取猫眼电影排行
- 4.解析库的使用
- 4.1 使用xpath
- 4.2 使用Beautiful Soup
- 4.3 使用pyquery
- 5.数据存储
- 5.1 文件存储
- 5.1.1 TXT 文件存储
- 5.1.2 JSON文件存储
- 5.1.3 CSV文件存储
- 5.2 关系型数据库存储
- 5.2.1 MySQL的存储
- 5.3 非关系数据库存储
- 5.3.1 MongoDB存储
- 5.3.2 Redis存储
- 6.Ajax数据爬取
- 6.1 什么是Ajax
- 6.2 Ajax分析方法
- 6.3 Ajax结果提取
- 6.4 分析Ajax爬取今日头条街拍美图
- 7.动态渲染页面爬取
- 7.1 Selenium的使用
- 7.2 Splash的使用
- 7.3 Splash负载均衡配置
- 7.4 使用selenium爬取淘宝商品
- 8.验证码的识别
- 8.1 图形验证码的识别
- 8.2 极验滑动验证码的识别
- 8.3 点触验证码的识别
- 8.4微博宫格验证码的识别
- 9.代理的使用
- 9.1 代理的设置
- 9.2 代理池的维护
- 9.3 付费代理的使用
- 9.4 ADSL拨号代理
- 9.5 使用代理爬取微信公总号文章
- 10.模拟登录
- 10.1 模拟登陆并爬去GitHub
- 10.2 Cookies池的搭建
- 11.App的爬取
- 11.1 Charles的使用
- 11.2 mitmproxy的使用
- 11.3 mitmdump“得到”App电子书信息
- 11.4 Appium的基本使用
- 11.5 Appnium爬取微信朋友圈
- 11.6 Appium+mitmdump爬取京东商品
- 12.pyspider框架的使用
- 12.1 pyspider框架介绍
- 12.2 pyspider的基本使用
- 12.3 pyspider用法详解
- 13.Scrapy框架的使用
- 13.1 scrapy框架介绍
- 13.2 入门
- 13.3 selector的用法
- 13.4 spider的用法
- 13.5 Downloader Middleware的用法
- 13.6 Spider Middleware的用法
- 13.7 Item Pipeline的用法
- 13.8 Scrapy对接Selenium
- 13.9 Scrapy对接Splash
- 13.10 Scrapy通用爬虫
- 13.11 Scrapyrt的使用
- 13.12 Scrapy对接Docker
- 13.13 Scrapy爬取新浪微博
- 14.分布式爬虫
- 14.1 分布式爬虫原理
- 14.2 Scrapy-Redis源码解析
- 14.3 Scrapy分布式实现
- 14.4 Bloom Filter的对接
- 15.分布式爬虫的部署
- 15.1 Scrapyd分布式部署
- 15.2 Scrapyd-Client的使用
- 15.3 Scrapyd对接Docker
- 15.4 Scrapyd批量部署
- 15.5 Gerapy分布式管理
- 微信公总号文章实战
- 源码
- other