🔥码云GVP开源项目 12k star Uniapp+ElementUI 功能强大 支持多语言、二开方便! 广告
参考文献:https://blog.csdn.net/tanggao1314/article/details/51340672 倒排索引就是根据单词内容来查找文档的方式,由于不是根据文档来确定文档所包含的内容,进行了相反的操作,所以被称为倒排索引 下面来看一个例子来理解什么是倒排索引 这里我准备了两个文件 分别为1.txt和2.txt 1.txt的内容如下 ``` I Love Hadoop I like ZhouSiYuan I love me ``` 2.txt的内容如下 ``` I Love MapReduce I like NBA I love Hadoop ``` 我这里使用的是默认的输入格式TextInputFormat,他是一行一行的读的,键是偏移量,如果对于这个不理解,可以看我之前发表的文章 MapReduce工作原理 Hadoop数据类型和自定义输入输出 所以在map阶段之前的到结果如下 map阶段从1.txt的得到的输入 ``` 0 I Love Hadoop 15 I like ZhouSiYuan 34 I love me ``` map阶段从2.txt的得到的输入 ``` 0 I Love MapReduce 18 I like NBA 30 I love Hadoop ``` map阶段 把词频作为值 把单词和URI组成key值 比如 key : I+hdfs://192.168.52.140:9000/index/2.txt value:1 为什么要这样设置键和值? 因为这样设计可以使用MapReduce框架自带的map端排序,将同一单词的词频组成列表 经过map阶段1.txt得到的输出如下 ``` I:hdfs://192.168.52.140:9000/index/1.txt 1 Love:hdfs://192.168.52.140:9000/index/1.txt 1 MapReduce:hdfs://192.168.52.140:9000/index/1.txt 1 I:hdfs://192.168.52.140:9000/index/1.txt 1 Like:hdfs://192.168.52.140:9000/index/1.txt 1 ZhouSiYuan:hdfs://192.168.52.140:9000/index/1.txt 1 I:hdfs://192.168.52.140:9000/index/1.txt 1 love:hdfs://192.168.52.140:9000/index/1.txt 1 me:hdfs://192.168.52.140:9000/index/1.txt 1 ``` 经过map阶段2.txt得到的输出如下 ``` I:hdfs://192.168.52.140:9000/index/2.txt 1 Love:hdfs://192.168.52.140:9000/index/2.txt 1 MapReduce:hdfs://192.168.52.140:9000/index/2.txt 1 I:hdfs://192.168.52.140:9000/index/2.txt 1 Like:hdfs://192.168.52.140:9000/index/2.txt 1 NBA:hdfs://192.168.52.140:9000/index/2.txt 1 I:hdfs://192.168.52.140:9000/index/2.txt 1 love:hdfs://192.168.52.140:9000/index/2.txt 1 Hadoop:hdfs://192.168.52.140:9000/index/2.txt 1 ``` 1.txt经过MapReduce框架自带的map端排序得到的输出结果如下 ``` I:hdfs://192.168.52.140:9000/index/1.txt list{1,1,1} Love:hdfs://192.168.52.140:9000/index/1.txt list{1} MapReduce:hdfs://192.168.52.140:9000/index/1.txt list{1} Like:hdfs://192.168.52.140:9000/index/1.txt list{1} ZhouSiYuan:hdfs://192.168.52.140:9000/index/1.txt list{1} love:hdfs://192.168.52.140:9000/index/1.txt list{1} me:hdfs://192.168.52.140:9000/index/1.txt list{1} ``` 2.txt经过MapReduce框架自带的map端排序得到的输出结果如下 ``` I:hdfs://192.168.52.140:9000/index/2.txt list{1,1,1} Love:hdfs://192.168.52.140:9000/index/2.txt list{1} MapReduce:hdfs://192.168.52.140:9000/index/2.txt list{1} Like:hdfs://192.168.52.140:9000/index/2.txt list{1} NBA:hdfs://192.168.52.140:9000/index/2.txt list{1} love:hdfs://192.168.52.140:9000/index/2.txt list{1} Hadoop:hdfs://192.168.52.140:9000/index/2.txt list{1} ``` combine阶段: key值为单词, value值由URI和词频组成 value: hdfs://192.168.52.140:9000/index/2.txt:3 key:I 为什么这样设计键值了? 因为在Shuffle过程将面临一个问题,所有具有相同单词的记录(由单词、URL和词频组成)应该交由同一个Reducer处理 所以重新把单词设置为键可以使用MapReduce框架默认的Shuffle过程,将相同单词的所有记录发送给同一个Reducer处理 combine阶段将key相同的value值累加 1.txt得到如下输出 ``` I hdfs://192.168.52.140:9000/index/1.txt:3 Love hdfs://192.168.52.140:9000/index/1.txt:1 MapReduce hdfs://192.168.52.140:9000/index/1.txt:1 Like hdfs://192.168.52.140:9000/index/1.txt:1 ZhouSiYuan hdfs://192.168.52.140:9000/index/1.txt:1 love hdfs://192.168.52.140:9000/index/1.txt:1 me hdfs://192.168.52.140:9000/index/1.txt:1 ``` 2.txt得到如下输出 ``` I hdfs://192.168.52.140:9000/index/2.txt:3 Love hdfs://192.168.52.140:9000/index/2.txt:1 MapReduce hdfs://192.168.52.140:9000/index/2.txt:1 Like hdfs://192.168.52.140:9000/index/2.txt:1 NBA hdfs://192.168.52.140:9000/index/2.txt:1 love hdfs://192.168.52.140:9000/index/2.txt:1 Hadoop hdfs://192.168.52.140:9000/index/2.txt:1 ``` 这样reducer过程就很简单了,它只用来生成文档列表 比如相同的单词I,这样生成文档列表 I hdfs://192.168.52.140:9000/index/2.txt:3;hdfs://192.168.52.140:9000/index/1.txt:3; 最后所有的输出结果如下 Hadoop hdfs://192.168.52.140:9000/index/1.txt:1;hdfs://192.168.52.140:9000/index/2.txt:1; I hdfs://192.168.52.140:9000/index/2.txt:3;hdfs://192.168.52.140:9000/index/1.txt:3; Love hdfs://192.168.52.140:9000/index/1.txt:1;hdfs://192.168.52.140:9000/index/2.txt:1; MapReduce hdfs://192.168.52.140:9000/index/2.txt:1; NBA hdfs://192.168.52.140:9000/index/2.txt:1; ZhouSiYuan hdfs://192.168.52.140:9000/index/1.txt:1; like hdfs://192.168.52.140:9000/index/1.txt:1;hdfs://192.168.52.140:9000/index/2.txt:1; love hdfs://192.168.52.140:9000/index/2.txt:1;hdfs://192.168.52.140:9000/index/1.txt:1; me hdfs://192.168.52.140:9000/index/1.txt:1; 下面是整个源代码 ``` package com.hadoop.mapreduce.test8.invertedindex; import java.io.IOException; import java.util.StringTokenizer; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.Reducer; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.input.FileSplit; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; public class InvertedIndex { /** * * @author 汤高 * */ public static class InvertedIndexMapper extends Mapper<Object, Text, Text, Text>{ private Text keyInfo = new Text(); // 存储单词和URI的组合 private Text valueInfo = new Text(); //存储词频 private FileSplit split; // 存储split对象。 @Override protected void map(Object key, Text value, Mapper<Object, Text, Text, Text>.Context context) throws IOException, InterruptedException { //获得<key,value>对所属的FileSplit对象。 split = (FileSplit) context.getInputSplit(); System.out.println("偏移量"+key); System.out.println("值"+value); //StringTokenizer是用来把字符串截取成一个个标记或单词的,默认是空格或多个空格(\t\n\r等等)截取 StringTokenizer itr = new StringTokenizer( value.toString()); while( itr.hasMoreTokens() ){ // key值由单词和URI组成。 keyInfo.set( itr.nextToken()+":"+split.getPath().toString()); //词频初始为1 valueInfo.set("1"); context.write(keyInfo, valueInfo); } System.out.println("key"+keyInfo); System.out.println("value"+valueInfo); } } /** * * @author 汤高 * */ public static class InvertedIndexCombiner extends Reducer<Text, Text, Text, Text>{ private Text info = new Text(); @Override protected void reduce(Text key, Iterable<Text> values, Reducer<Text, Text, Text, Text>.Context context) throws IOException, InterruptedException { //统计词频 int sum = 0; for (Text value : values) { sum += Integer.parseInt(value.toString() ); } int splitIndex = key.toString().indexOf(":"); //重新设置value值由URI和词频组成 info.set( key.toString().substring( splitIndex + 1) +":"+sum ); //重新设置key值为单词 key.set( key.toString().substring(0,splitIndex)); context.write(key, info); System.out.println("key"+key); System.out.println("value"+info); } } /** * * @author 汤高 * */ public static class InvertedIndexReducer extends Reducer<Text, Text, Text, Text>{ private Text result = new Text(); @Override protected void reduce(Text key, Iterable<Text> values, Reducer<Text, Text, Text, Text>.Context context) throws IOException, InterruptedException { //生成文档列表 String fileList = new String(); for (Text value : values) { fileList += value.toString()+";"; } result.set(fileList); context.write(key, result); } } public static void main(String[] args) { try { Configuration conf = new Configuration(); Job job = Job.getInstance(conf,"InvertedIndex"); job.setJarByClass(InvertedIndex.class); //实现map函数,根据输入的<key,value>对生成中间结果。 job.setMapperClass(InvertedIndexMapper.class); job.setMapOutputKeyClass(Text.class); job.setMapOutputValueClass(Text.class); job.setCombinerClass(InvertedIndexCombiner.class); job.setReducerClass(InvertedIndexReducer.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(Text.class); //我把那两个文件上传到这个index目录下了 FileInputFormat.addInputPath(job, new Path("hdfs://192.168.52.140:9000/index/")); //把结果输出到out_index+时间戳的目录下 FileOutputFormat.setOutputPath(job, new Path("hdfs://192.168.52.140:9000/out_index"+System.currentTimeMillis()+"/")); System.exit(job.waitForCompletion(true) ? 0 : 1); } catch (IllegalStateException e) { e.printStackTrace(); } catch (IllegalArgumentException e) { e.printStackTrace(); } catch (ClassNotFoundException e) { e.printStackTrace(); } catch (IOException e) { e.printStackTrace(); } catch (InterruptedException e) { e.printStackTrace(); } } } ```