## 检索文档
现在Elasticsearch中已经存储了一些数据,我们可以根据业务需求开始工作了。第一个需求是能够检索单个员工的信息。
这对于Elasticsearch来说非常简单。我们只要执行HTTP GET请求并指出文档的“地址”——索引、类型和ID既可。根据这三部分信息,我们就可以返回原始JSON文档:
```Jacscript
GET /megacorp/employee/1
```
响应的内容中包含一些文档的元信息,John Smith的原始JSON文档包含在`_source`字段中。
```Javascript
{
"_index" : "megacorp",
"_type" : "employee",
"_id" : "1",
"_version" : 1,
"found" : true,
"_source" : {
"first_name" : "John",
"last_name" : "Smith",
"age" : 25,
"about" : "I love to go rock climbing",
"interests": [ "sports", "music" ]
}
}
```
>我们通过HTTP方法`GET`来检索文档,同样的,我们可以使用`DELETE`方法删除文档,使用`HEAD`方法检查某文档是否存在。如果想更新已存在的文档,我们只需再`PUT`一次。
## 简单搜索
`GET`请求非常简单——你能轻松获取你想要的文档。让我们来进一步尝试一些东西,比如简单的搜索!
我们尝试一个最简单的搜索全部员工的请求:
```Javascript
GET /megacorp/employee/_search
```
你可以看到我们依然使用`megacorp`索引和`employee`类型,但是我们在结尾使用关键字`_search`来取代原来的文档ID。响应内容的`hits`数组中包含了我们所有的三个文档。默认情况下搜索会返回前10个结果。
```Javascript
{
"took": 6,
"timed_out": false,
"_shards": { ... },
"hits": {
"total": 3,
"max_score": 1,
"hits": [
{
"_index": "megacorp",
"_type": "employee",
"_id": "3",
"_score": 1,
"_source": {
"first_name": "Douglas",
"last_name": "Fir",
"age": 35,
"about": "I like to build cabinets",
"interests": [ "forestry" ]
}
},
{
"_index": "megacorp",
"_type": "employee",
"_id": "1",
"_score": 1,
"_source": {
"first_name": "John",
"last_name": "Smith",
"age": 25,
"about": "I love to go rock climbing",
"interests": [ "sports", "music" ]
}
},
{
"_index": "megacorp",
"_type": "employee",
"_id": "2",
"_score": 1,
"_source": {
"first_name": "Jane",
"last_name": "Smith",
"age": 32,
"about": "I like to collect rock albums",
"interests": [ "music" ]
}
}
]
}
}
```
>**注意**:
>响应内容不仅会告诉我们哪些文档被匹配到,而且这些文档内容完整的被包含在其中—我们在给用户展示搜索结果时需要用到的所有信息都有了。
接下来,让我们搜索姓氏中包含**“Smith”**的员工。要做到这一点,我们将在命令行中使用轻量级的搜索方法。这种方法常被称作**查询字符串(query string)**搜索,因为我们像传递URL参数一样去传递查询语句:
```Javascript
GET /megacorp/employee/_search?q=last_name:Smith
```
我们在请求中依旧使用`_search`关键字,然后将查询语句传递给参数`q=`。这样就可以得到所有姓氏为Smith的结果:
```Javascript
{
...
"hits": {
"total": 2,
"max_score": 0.30685282,
"hits": [
{
...
"_source": {
"first_name": "John",
"last_name": "Smith",
"age": 25,
"about": "I love to go rock climbing",
"interests": [ "sports", "music" ]
}
},
{
...
"_source": {
"first_name": "Jane",
"last_name": "Smith",
"age": 32,
"about": "I like to collect rock albums",
"interests": [ "music" ]
}
}
]
}
}
```
## 使用DSL语句查询
查询字符串搜索便于通过命令行完成**特定(ad hoc)**的搜索,但是它也有局限性(参阅简单搜索章节)。Elasticsearch提供丰富且灵活的查询语言叫做**DSL查询(Query DSL)**,它允许你构建更加复杂、强大的查询。
**DSL(Domain Specific Language特定领域语言)**以JSON请求体的形式出现。我们可以这样表示之前关于“Smith”的查询:
```Javascript
GET /megacorp/employee/_search
{
"query" : {
"match" : {
"last_name" : "Smith"
}
}
}
```
这会返回与之前查询相同的结果。你可以看到有些东西改变了,我们不再使用**查询字符串(query string)**做为参数,而是使用请求体代替。这个请求体使用JSON表示,其中使用了`match`语句(查询类型之一,具体我们以后会学到)。
## 更复杂的搜索
我们让搜索稍微再变的复杂一些。我们依旧想要找到姓氏为“Smith”的员工,但是我们只想得到年龄大于30岁的员工。我们的语句将添加**过滤器(filter)**,它使得我们高效率的执行一个结构化搜索:
```Javascript
GET /megacorp/employee/_search
{
"query" : {
"filtered" : {
"filter" : {
"range" : {
"age" : { "gt" : 30 } <1>
}
},
"query" : {
"match" : {
"last_name" : "smith" <2>
}
}
}
}
}
```
* <1> 这部分查询属于**区间过滤器(range filter)**,它用于查找所有年龄大于30岁的数据——`gt`为"greater than"的缩写。
* <2> 这部分查询与之前的`match`**语句(query)**一致。
现在不要担心语法太多,我们将会在以后详细的讨论。你只要知道我们添加了一个**过滤器(filter)**用于执行区间搜索,然后重复利用了之前的`match`语句。现在我们的搜索结果只显示了一个32岁且名字是“Jane Smith”的员工:
```Javascript
{
...
"hits": {
"total": 1,
"max_score": 0.30685282,
"hits": [
{
...
"_source": {
"first_name": "Jane",
"last_name": "Smith",
"age": 32,
"about": "I like to collect rock albums",
"interests": [ "music" ]
}
}
]
}
}
```
## 全文搜索
到目前为止搜索都很简单:搜索特定的名字,通过年龄筛选。让我们尝试一种更高级的搜索,全文搜索——一种传统数据库很难实现的功能。
我们将会搜索所有喜欢**“rock climbing”**的员工:
```Javascript
GET /megacorp/employee/_search
{
"query" : {
"match" : {
"about" : "rock climbing"
}
}
}
```
你可以看到我们使用了之前的`match`查询,从`about`字段中搜索**"rock climbing"**,我们得到了两个匹配文档:
```Javascript
{
...
"hits": {
"total": 2,
"max_score": 0.16273327,
"hits": [
{
...
"_score": 0.16273327, <1>
"_source": {
"first_name": "John",
"last_name": "Smith",
"age": 25,
"about": "I love to go rock climbing",
"interests": [ "sports", "music" ]
}
},
{
...
"_score": 0.016878016, <2>
"_source": {
"first_name": "Jane",
"last_name": "Smith",
"age": 32,
"about": "I like to collect rock albums",
"interests": [ "music" ]
}
}
]
}
}
```
- <1><2> 结果相关性评分。
默认情况下,Elasticsearch根据结果相关性评分来对结果集进行排序,所谓的「结果相关性评分」就是文档与查询条件的匹配程度。很显然,排名第一的`John Smith`的`about`字段明确的写到**“rock
climbing”**。
但是为什么`Jane Smith`也会出现在结果里呢?原因是**“rock”**在她的`abuot`字段中被提及了。因为只有**“rock”**被提及而**“climbing”**没有,所以她的`_score`要低于John。
这个例子很好的解释了Elasticsearch如何在各种文本字段中进行全文搜索,并且返回相关性最大的结果集。**相关性(relevance)**的概念在Elasticsearch中非常重要,而这个概念在传统关系型数据库中是不可想象的,因为传统数据库对记录的查询只有匹配或者不匹配。
## 短语搜索
目前我们可以在字段中搜索单独的一个词,这挺好的,但是有时候你想要确切的匹配若干个单词或者**短语(phrases)**。例如我们想要查询同时包含"rock"和"climbing"(并且是相邻的)的员工记录。
要做到这个,我们只要将`match`查询变更为`match_phrase`查询即可:
```Javascript
GET /megacorp/employee/_search
{
"query" : {
"match_phrase" : {
"about" : "rock climbing"
}
}
}
```
毫无疑问,该查询返回John Smith的文档:
```Javascript
{
...
"hits": {
"total": 1,
"max_score": 0.23013961,
"hits": [
{
...
"_score": 0.23013961,
"_source": {
"first_name": "John",
"last_name": "Smith",
"age": 25,
"about": "I love to go rock climbing",
"interests": [ "sports", "music" ]
}
}
]
}
}
```
## 高亮我们的搜索
很多应用喜欢从每个搜索结果中**高亮(highlight)**匹配到的关键字,这样用户可以知道为什么这些文档和查询相匹配。在Elasticsearch中高亮片段是非常容易的。
让我们在之前的语句上增加`highlight`参数:
```Javascript
GET /megacorp/employee/_search
{
"query" : {
"match_phrase" : {
"about" : "rock climbing"
}
},
"highlight": {
"fields" : {
"about" : {}
}
}
}
```
当我们运行这个语句时,会命中与之前相同的结果,但是在返回结果中会有一个新的部分叫做`highlight`,这里包含了来自`about`字段中的文本,并且用`<em></em>`来标识匹配到的单词。
```Javascript
{
...
"hits": {
"total": 1,
"max_score": 0.23013961,
"hits": [
{
...
"_score": 0.23013961,
"_source": {
"first_name": "John",
"last_name": "Smith",
"age": 25,
"about": "I love to go rock climbing",
"interests": [ "sports", "music" ]
},
"highlight": {
"about": [
"I love to go <em>rock</em> <em>climbing</em>" <1>
]
}
}
]
}
}
```
- <1> 原有文本中高亮的片段
你可以在高亮章节阅读更多关于搜索高亮的部分。
- Introduction
- 入门
- 是什么
- 安装
- API
- 文档
- 索引
- 搜索
- 聚合
- 小结
- 分布式
- 结语
- 分布式集群
- 空集群
- 集群健康
- 添加索引
- 故障转移
- 横向扩展
- 更多扩展
- 应对故障
- 数据
- 文档
- 索引
- 获取
- 存在
- 更新
- 创建
- 删除
- 版本控制
- 局部更新
- Mget
- 批量
- 结语
- 分布式增删改查
- 路由
- 分片交互
- 新建、索引和删除
- 检索
- 局部更新
- 批量请求
- 批量格式
- 搜索
- 空搜索
- 多索引和多类型
- 分页
- 查询字符串
- 映射和分析
- 数据类型差异
- 确切值对决全文
- 倒排索引
- 分析
- 映射
- 复合类型
- 结构化查询
- 请求体查询
- 结构化查询
- 查询与过滤
- 重要的查询子句
- 过滤查询
- 验证查询
- 结语
- 排序
- 排序
- 字符串排序
- 相关性
- 字段数据
- 分布式搜索
- 查询阶段
- 取回阶段
- 搜索选项
- 扫描和滚屏
- 索引管理
- 创建删除
- 设置
- 配置分析器
- 自定义分析器
- 映射
- 根对象
- 元数据中的source字段
- 元数据中的all字段
- 元数据中的ID字段
- 动态映射
- 自定义动态映射
- 默认映射
- 重建索引
- 别名
- 深入分片
- 使文本可以被搜索
- 动态索引
- 近实时搜索
- 持久化变更
- 合并段
- 结构化搜索
- 查询准确值
- 组合过滤
- 查询多个准确值
- 包含,而不是相等
- 范围
- 处理 Null 值
- 缓存
- 过滤顺序
- 全文搜索
- 匹配查询
- 多词查询
- 组合查询
- 布尔匹配
- 增加子句
- 控制分析
- 关联失效
- 多字段搜索
- 多重查询字符串
- 单一查询字符串
- 最佳字段
- 最佳字段查询调优
- 多重匹配查询
- 最多字段查询
- 跨字段对象查询
- 以字段为中心查询
- 全字段查询
- 跨字段查询
- 精确查询
- 模糊匹配
- Phrase matching
- Slop
- Multi value fields
- Scoring
- Relevance
- Performance
- Shingles
- Partial_Matching
- Postcodes
- Prefix query
- Wildcard Regexp
- Match phrase prefix
- Index time
- Ngram intro
- Search as you type
- Compound words
- Relevance
- Scoring theory
- Practical scoring
- Query time boosting
- Query scoring
- Not quite not
- Ignoring TFIDF
- Function score query
- Popularity
- Boosting filtered subsets
- Random scoring
- Decay functions
- Pluggable similarities
- Conclusion
- Language intro
- Intro
- Using
- Configuring
- Language pitfalls
- One language per doc
- One language per field
- Mixed language fields
- Conclusion
- Identifying words
- Intro
- Standard analyzer
- Standard tokenizer
- ICU plugin
- ICU tokenizer
- Tidying text
- Token normalization
- Intro
- Lowercasing
- Removing diacritics
- Unicode world
- Case folding
- Character folding
- Sorting and collations
- Stemming
- Intro
- Algorithmic stemmers
- Dictionary stemmers
- Hunspell stemmer
- Choosing a stemmer
- Controlling stemming
- Stemming in situ
- Stopwords
- Intro
- Using stopwords
- Stopwords and performance
- Divide and conquer
- Phrase queries
- Common grams
- Relevance
- Synonyms
- Intro
- Using synonyms
- Synonym formats
- Expand contract
- Analysis chain
- Multi word synonyms
- Symbol synonyms
- Fuzzy matching
- Intro
- Fuzziness
- Fuzzy query
- Fuzzy match query
- Scoring fuzziness
- Phonetic matching
- Aggregations
- overview
- circuit breaker fd settings
- filtering
- facets
- docvalues
- eager
- breadth vs depth
- Conclusion
- concepts buckets
- basic example
- add metric
- nested bucket
- extra metrics
- bucket metric list
- histogram
- date histogram
- scope
- filtering
- sorting ordering
- approx intro
- cardinality
- percentiles
- sigterms intro
- sigterms
- fielddata
- analyzed vs not
- 地理坐标点
- 地理坐标点
- 通过地理坐标点过滤
- 地理坐标盒模型过滤器
- 地理距离过滤器
- 缓存地理位置过滤器
- 减少内存占用
- 按距离排序
- Geohashe
- Geohashe
- Geohashe映射
- Geohash单元过滤器
- 地理位置聚合
- 地理位置聚合
- 按距离聚合
- Geohash单元聚合器
- 范围(边界)聚合器
- 地理形状
- 地理形状
- 映射地理形状
- 索引地理形状
- 查询地理形状
- 在查询中使用已索引的形状
- 地理形状的过滤与缓存
- 关系
- 关系
- 应用级别的Join操作
- 扁平化你的数据
- Top hits
- Concurrency
- Concurrency solutions
- 嵌套
- 嵌套对象
- 嵌套映射
- 嵌套查询
- 嵌套排序
- 嵌套集合
- Parent Child
- Parent child
- Indexing parent child
- Has child
- Has parent
- Children agg
- Grandparents
- Practical considerations
- Scaling
- Shard
- Overallocation
- Kagillion shards
- Capacity planning
- Replica shards
- Multiple indices
- Index per timeframe
- Index templates
- Retiring data
- Index per user
- Shared index
- Faking it
- One big user
- Scale is not infinite
- Cluster Admin
- Marvel
- Health
- Node stats
- Other stats
- Deployment
- hardware
- other
- config
- dont touch
- heap
- file descriptors
- conclusion
- cluster settings
- Post Deployment
- dynamic settings
- logging
- indexing perf
- rolling restart
- backup
- restore
- conclusion