### match匹配怎么当成布尔查询来使用
到现在为止,你可能已经意识到在一个布尔查询中多字段`match`查询仅仅包裹了已经生成的`term`查询。通过默认的`or`操作符,每个`term`查询都会像一个`should`子句一样被添加,只要有一个子句匹配就可以了。下面的两个查询是等价的:
```Javacript
{
"match": { "title": "brown fox"}
}
```
```Javascript
{
"bool": {
"should": [
{ "term": { "title": "brown" }},
{ "term": { "title": "fox" }}
]
}
}
```
通过`and`操作符,所有的`term`查询会像`must`子句一样被添加,因此所有的子句都必须匹配。下面的两个查询是等价的:
```Javascript
{
"match": {
"title": {
"query": "brown fox",
"operator": "and"
}
}
}
```
```Javascript
{
"bool": {
"must": [
{ "term": { "title": "brown" }},
{ "term": { "title": "fox" }}
]
}
}
```
如果`minimum_should_match`参数被指定,`match`查询就直接被转换成一个`bool`查询,下面两个查询是等价的:
```Javascript
{
"match": {
"title": {
"query": "quick brown fox",
"minimum_should_match": "75%"
}
}
}
```
```Javascript
{
"bool": {
"should": [
{ "term": { "title": "brown" }},
{ "term": { "title": "fox" }},
{ "term": { "title": "quick" }}
],
"minimum_should_match": 2 <1>
}
}
```
<1>因为只有三个子句,所以 `minimum_should_match`参数在`match`查询中的值`75%`就下舍到了`2`。3个`should`子句中至少有两个子句匹配。
当然,我们通常写这些查询类型的时候还是使用`match`查询的,但是理解`match`查询在内部是怎么工作的可以让你在任何你需要使用的时候更加得心应手。有些情况仅仅使用一个`match`查询是不够的,比如给某些查询词更高的权重。这种情况我们会在下一节看个例子。
<!--
=== How match Uses bool
By now, you have probably realized that <<match-multi-word,multiword `match`
queries>> simply wrap((("match query", "use of bool query in multi-word searches")))((("bool query", "use by match query in multi-word searches")))((("full text search", "how match query uses bool query"))) the generated `term` queries in a `bool` query. With the
default `or` operator, each `term` query is added as a `should` clause, so
at least one clause must match. These two queries are equivalent:
[source,js]
--------------------------------------------------
{
"match": { "title": "brown fox"}
}
--------------------------------------------------
[source,js]
--------------------------------------------------
{
"bool": {
"should": [
{ "term": { "title": "brown" }},
{ "term": { "title": "fox" }}
]
}
}
--------------------------------------------------
With the `and` operator, all the `term` queries are added as `must` clauses,
so _all_ clauses must match. These two queries are equivalent:
[source,js]
--------------------------------------------------
{
"match": {
"title": {
"query": "brown fox",
"operator": "and"
}
}
}
--------------------------------------------------
[source,js]
--------------------------------------------------
{
"bool": {
"must": [
{ "term": { "title": "brown" }},
{ "term": { "title": "fox" }}
]
}
}
--------------------------------------------------
And if the `minimum_should_match` parameter is((("minimum_should_match parameter", "match query using bool query"))) specified, it is passed
directly through to the `bool` query, making these two queries equivalent:
[source,js]
--------------------------------------------------
{
"match": {
"title": {
"query": "quick brown fox",
"minimum_should_match": "75%"
}
}
}
--------------------------------------------------
[source,js]
--------------------------------------------------
{
"bool": {
"should": [
{ "term": { "title": "brown" }},
{ "term": { "title": "fox" }},
{ "term": { "title": "quick" }}
],
"minimum_should_match": 2 <1>
}
}
--------------------------------------------------
<1> Because there are only three clauses, the `minimum_should_match`
value of `75%` in the `match` query is rounded down to `2`.
At least two out of the three `should` clauses must match.
Of course, we would normally write these types of queries by using the `match`
query, but understanding how the `match` query works internally lets you take
control of the process when you need to. Some things can't be
done with a single `match` query, such as give more weight to some query terms
than to others. We will look at an example of this in the next section.
-->
- Introduction
- 入门
- 是什么
- 安装
- API
- 文档
- 索引
- 搜索
- 聚合
- 小结
- 分布式
- 结语
- 分布式集群
- 空集群
- 集群健康
- 添加索引
- 故障转移
- 横向扩展
- 更多扩展
- 应对故障
- 数据
- 文档
- 索引
- 获取
- 存在
- 更新
- 创建
- 删除
- 版本控制
- 局部更新
- Mget
- 批量
- 结语
- 分布式增删改查
- 路由
- 分片交互
- 新建、索引和删除
- 检索
- 局部更新
- 批量请求
- 批量格式
- 搜索
- 空搜索
- 多索引和多类型
- 分页
- 查询字符串
- 映射和分析
- 数据类型差异
- 确切值对决全文
- 倒排索引
- 分析
- 映射
- 复合类型
- 结构化查询
- 请求体查询
- 结构化查询
- 查询与过滤
- 重要的查询子句
- 过滤查询
- 验证查询
- 结语
- 排序
- 排序
- 字符串排序
- 相关性
- 字段数据
- 分布式搜索
- 查询阶段
- 取回阶段
- 搜索选项
- 扫描和滚屏
- 索引管理
- 创建删除
- 设置
- 配置分析器
- 自定义分析器
- 映射
- 根对象
- 元数据中的source字段
- 元数据中的all字段
- 元数据中的ID字段
- 动态映射
- 自定义动态映射
- 默认映射
- 重建索引
- 别名
- 深入分片
- 使文本可以被搜索
- 动态索引
- 近实时搜索
- 持久化变更
- 合并段
- 结构化搜索
- 查询准确值
- 组合过滤
- 查询多个准确值
- 包含,而不是相等
- 范围
- 处理 Null 值
- 缓存
- 过滤顺序
- 全文搜索
- 匹配查询
- 多词查询
- 组合查询
- 布尔匹配
- 增加子句
- 控制分析
- 关联失效
- 多字段搜索
- 多重查询字符串
- 单一查询字符串
- 最佳字段
- 最佳字段查询调优
- 多重匹配查询
- 最多字段查询
- 跨字段对象查询
- 以字段为中心查询
- 全字段查询
- 跨字段查询
- 精确查询
- 模糊匹配
- Phrase matching
- Slop
- Multi value fields
- Scoring
- Relevance
- Performance
- Shingles
- Partial_Matching
- Postcodes
- Prefix query
- Wildcard Regexp
- Match phrase prefix
- Index time
- Ngram intro
- Search as you type
- Compound words
- Relevance
- Scoring theory
- Practical scoring
- Query time boosting
- Query scoring
- Not quite not
- Ignoring TFIDF
- Function score query
- Popularity
- Boosting filtered subsets
- Random scoring
- Decay functions
- Pluggable similarities
- Conclusion
- Language intro
- Intro
- Using
- Configuring
- Language pitfalls
- One language per doc
- One language per field
- Mixed language fields
- Conclusion
- Identifying words
- Intro
- Standard analyzer
- Standard tokenizer
- ICU plugin
- ICU tokenizer
- Tidying text
- Token normalization
- Intro
- Lowercasing
- Removing diacritics
- Unicode world
- Case folding
- Character folding
- Sorting and collations
- Stemming
- Intro
- Algorithmic stemmers
- Dictionary stemmers
- Hunspell stemmer
- Choosing a stemmer
- Controlling stemming
- Stemming in situ
- Stopwords
- Intro
- Using stopwords
- Stopwords and performance
- Divide and conquer
- Phrase queries
- Common grams
- Relevance
- Synonyms
- Intro
- Using synonyms
- Synonym formats
- Expand contract
- Analysis chain
- Multi word synonyms
- Symbol synonyms
- Fuzzy matching
- Intro
- Fuzziness
- Fuzzy query
- Fuzzy match query
- Scoring fuzziness
- Phonetic matching
- Aggregations
- overview
- circuit breaker fd settings
- filtering
- facets
- docvalues
- eager
- breadth vs depth
- Conclusion
- concepts buckets
- basic example
- add metric
- nested bucket
- extra metrics
- bucket metric list
- histogram
- date histogram
- scope
- filtering
- sorting ordering
- approx intro
- cardinality
- percentiles
- sigterms intro
- sigterms
- fielddata
- analyzed vs not
- 地理坐标点
- 地理坐标点
- 通过地理坐标点过滤
- 地理坐标盒模型过滤器
- 地理距离过滤器
- 缓存地理位置过滤器
- 减少内存占用
- 按距离排序
- Geohashe
- Geohashe
- Geohashe映射
- Geohash单元过滤器
- 地理位置聚合
- 地理位置聚合
- 按距离聚合
- Geohash单元聚合器
- 范围(边界)聚合器
- 地理形状
- 地理形状
- 映射地理形状
- 索引地理形状
- 查询地理形状
- 在查询中使用已索引的形状
- 地理形状的过滤与缓存
- 关系
- 关系
- 应用级别的Join操作
- 扁平化你的数据
- Top hits
- Concurrency
- Concurrency solutions
- 嵌套
- 嵌套对象
- 嵌套映射
- 嵌套查询
- 嵌套排序
- 嵌套集合
- Parent Child
- Parent child
- Indexing parent child
- Has child
- Has parent
- Children agg
- Grandparents
- Practical considerations
- Scaling
- Shard
- Overallocation
- Kagillion shards
- Capacity planning
- Replica shards
- Multiple indices
- Index per timeframe
- Index templates
- Retiring data
- Index per user
- Shared index
- Faking it
- One big user
- Scale is not infinite
- Cluster Admin
- Marvel
- Health
- Node stats
- Other stats
- Deployment
- hardware
- other
- config
- dont touch
- heap
- file descriptors
- conclusion
- cluster settings
- Post Deployment
- dynamic settings
- logging
- indexing perf
- rolling restart
- backup
- restore
- conclusion