### 最佳字段
假设我们有一个让用户搜索博客文章的网站(允许多字段搜索,最佳字段查询),就像这两份文档一样:
```Javascript
PUT /my_index/my_type/1
{
"title": "Quick brown rabbits",
"body": "Brown rabbits are commonly seen."
}
PUT /my_index/my_type/2
{
"title": "Keeping pets healthy",
"body": "My quick brown fox eats rabbits on a regular basis."
}
```
// SENSE: 110_Multi_Field_Search/15_Best_fields.json
用户输入了"Brown fox",然后按下了搜索键。我们无法预先知道用户搜索的词条会出现在博文的title或者body字段中,但是用户是在搜索和他输入的单词相关的内容。右眼观察,以上的两份文档中,文档2似乎匹配的更好一些,因为它包含了用户寻找的两个单词。
让我们运行下面的bool查询:
```Javascript
{
"query": {
"bool": {
"should": [
{ "match": { "title": "Brown fox" }},
{ "match": { "body": "Brown fox" }}
]
}
}
}
```
// SENSE: 110_Multi_Field_Search/15_Best_fields.json
然后我们发现文档1的分值更高:
```Javascript
{
"hits": [
{
"_id": "1",
"_score": 0.14809652,
"_source": {
"title": "Quick brown rabbits",
"body": "Brown rabbits are commonly seen."
}
},
{
"_id": "2",
"_score": 0.09256032,
"_source": {
"title": "Keeping pets healthy",
"body": "My quick brown fox eats rabbits on a regular basis."
}
}
]
}
```
要理解原因,想想bool查询是如何计算得到其分值的:
* 1.运行should子句中的两个查询
* 2.相加查询返回的分值
* 3.将相加得到的分值乘以匹配的查询子句的数量
* 4.除以总的查询子句的数量
文档1在两个字段中都包含了brown,因此两个match查询都匹配成功并拥有了一个分值。文档2在body字段中包含了brown以及fox,但是在title字段中没有出现任何搜索的单词。因此对body字段查询得到的高分加上对title字段查询得到的零分,然后在乘以匹配的查询子句数量1,最后除以总的查询子句数量2,导致整体分值比文档1的低。
在这个例子中,title和body字段是互相竞争的。我们想要找到一个最佳匹配(Best-matching)的字段。
如果我们不是合并来自每个字段的分值,而是使用最佳匹配字段的分值作为整个查询的整体分值呢?这就会让包含有我们寻找的两个单词的字段有更高的权重,而不是在不同的字段中重复出现的相同单词。
#### dis_max查询
相比使用bool查询,我们可以使用dis_max查询(Disjuction Max Query)。Disjuction的意思"OR"(而Conjunction的意思是"AND"),因此Disjuction Max Query的意思就是返回匹配了任何查询的文档,并且分值是产生了最佳匹配的查询所对应的分值:
```Javascript
{
"query": {
"dis_max": {
"queries": [
{ "match": { "title": "Brown fox" }},
{ "match": { "body": "Brown fox" }}
]
}
}
}
```
// SENSE: 110_Multi_Field_Search/15_Best_fields.json
它会产生我们期望的结果:
```Javascript
{
"hits": [
{
"_id": "2",
"_score": 0.21509302,
"_source": {
"title": "Keeping pets healthy",
"body": "My quick brown fox eats rabbits on a regular basis."
}
},
{
"_id": "1",
"_score": 0.12713557,
"_source": {
"title": "Quick brown rabbits",
"body": "Brown rabbits are commonly seen."
}
}
]
}
```
<!-- === Best Fields
Imagine that we have a website that allows ((("multifield search", "best fields queries")))((("best fields queries")))users to search blog posts, such
as these two documents:
[source,js]
--------------------------------------------------
PUT /my_index/my_type/1
{
"title": "Quick brown rabbits",
"body": "Brown rabbits are commonly seen."
}
PUT /my_index/my_type/2
{
"title": "Keeping pets healthy",
"body": "My quick brown fox eats rabbits on a regular basis."
}
--------------------------------------------------
// SENSE: 110_Multi_Field_Search/15_Best_fields.json
The user types in the words ``Brown fox'' and clicks Search. We don't
know ahead of time if the user's search terms will be found in the `title` or
the `body` field of the post, but it is likely that the user is searching for
related words. To our eyes, document 2 appears to be the better match, as it
contains both words that we are looking for.
Now we run the following `bool` query:
[source,js]
--------------------------------------------------
{
"query": {
"bool": {
"should": [
{ "match": { "title": "Brown fox" }},
{ "match": { "body": "Brown fox" }}
]
}
}
}
--------------------------------------------------
// SENSE: 110_Multi_Field_Search/15_Best_fields.json
And we find that this query gives document 1 the higher score:
[source,js]
--------------------------------------------------
{
"hits": [
{
"_id": "1",
"_score": 0.14809652,
"_source": {
"title": "Quick brown rabbits",
"body": "Brown rabbits are commonly seen."
}
},
{
"_id": "2",
"_score": 0.09256032,
"_source": {
"title": "Keeping pets healthy",
"body": "My quick brown fox eats rabbits on a regular basis."
}
}
]
}
--------------------------------------------------
To understand why, think about how the `bool` query ((("bool query", "relevance score calculation")))((("relevance scores", "calculation in bool queries")))calculates its score:
1. It runs both of the queries in the `should` clause.
2. It adds their scores together.
3. It multiplies the total by the number of matching clauses.
4. It divides the result by the total number of clauses (two).
Document 1 contains the word `brown` in both fields, so both `match` clauses
are successful and have a score. Document 2 contains both `brown` and
`fox` in the `body` field but neither word in the `title` field. The high
score from the `body` query is added to the zero score from the `title` query,
and multiplied by one-half, resulting in a lower overall score than for document 1.
In this example, the `title` and `body` fields are competing with each other.
We want to find the single _best-matching_ field.
What if, instead of combining the scores from each field, we used the score
from the _best-matching_ field as the overall score for the query? This would
give preference to a single field that contains _both_ of the words we are
looking for, rather than the same word repeated in different fields.
[[dis-max-query]]
==== dis_max Query
Instead of the `bool` query, we can use the `dis_max` or _Disjunction Max
Query_. Disjunction means _or_((("dis_max (disjunction max) query"))) (while conjunction means _and_) so the
Disjunction Max Query simply means _return documents that match any of these
queries, and return the score of the best matching query_:
[source,js]
--------------------------------------------------
{
"query": {
"dis_max": {
"queries": [
{ "match": { "title": "Brown fox" }},
{ "match": { "body": "Brown fox" }}
]
}
}
}
--------------------------------------------------
// SENSE: 110_Multi_Field_Search/15_Best_fields.json
This produces the results that we want:
[source,js]
--------------------------------------------------
{
"hits": [
{
"_id": "2",
"_score": 0.21509302,
"_source": {
"title": "Keeping pets healthy",
"body": "My quick brown fox eats rabbits on a regular basis."
}
},
{
"_id": "1",
"_score": 0.12713557,
"_source": {
"title": "Quick brown rabbits",
"body": "Brown rabbits are commonly seen."
}
}
]
}
--------------------------------------------------
-->
- Introduction
- 入门
- 是什么
- 安装
- API
- 文档
- 索引
- 搜索
- 聚合
- 小结
- 分布式
- 结语
- 分布式集群
- 空集群
- 集群健康
- 添加索引
- 故障转移
- 横向扩展
- 更多扩展
- 应对故障
- 数据
- 文档
- 索引
- 获取
- 存在
- 更新
- 创建
- 删除
- 版本控制
- 局部更新
- Mget
- 批量
- 结语
- 分布式增删改查
- 路由
- 分片交互
- 新建、索引和删除
- 检索
- 局部更新
- 批量请求
- 批量格式
- 搜索
- 空搜索
- 多索引和多类型
- 分页
- 查询字符串
- 映射和分析
- 数据类型差异
- 确切值对决全文
- 倒排索引
- 分析
- 映射
- 复合类型
- 结构化查询
- 请求体查询
- 结构化查询
- 查询与过滤
- 重要的查询子句
- 过滤查询
- 验证查询
- 结语
- 排序
- 排序
- 字符串排序
- 相关性
- 字段数据
- 分布式搜索
- 查询阶段
- 取回阶段
- 搜索选项
- 扫描和滚屏
- 索引管理
- 创建删除
- 设置
- 配置分析器
- 自定义分析器
- 映射
- 根对象
- 元数据中的source字段
- 元数据中的all字段
- 元数据中的ID字段
- 动态映射
- 自定义动态映射
- 默认映射
- 重建索引
- 别名
- 深入分片
- 使文本可以被搜索
- 动态索引
- 近实时搜索
- 持久化变更
- 合并段
- 结构化搜索
- 查询准确值
- 组合过滤
- 查询多个准确值
- 包含,而不是相等
- 范围
- 处理 Null 值
- 缓存
- 过滤顺序
- 全文搜索
- 匹配查询
- 多词查询
- 组合查询
- 布尔匹配
- 增加子句
- 控制分析
- 关联失效
- 多字段搜索
- 多重查询字符串
- 单一查询字符串
- 最佳字段
- 最佳字段查询调优
- 多重匹配查询
- 最多字段查询
- 跨字段对象查询
- 以字段为中心查询
- 全字段查询
- 跨字段查询
- 精确查询
- 模糊匹配
- Phrase matching
- Slop
- Multi value fields
- Scoring
- Relevance
- Performance
- Shingles
- Partial_Matching
- Postcodes
- Prefix query
- Wildcard Regexp
- Match phrase prefix
- Index time
- Ngram intro
- Search as you type
- Compound words
- Relevance
- Scoring theory
- Practical scoring
- Query time boosting
- Query scoring
- Not quite not
- Ignoring TFIDF
- Function score query
- Popularity
- Boosting filtered subsets
- Random scoring
- Decay functions
- Pluggable similarities
- Conclusion
- Language intro
- Intro
- Using
- Configuring
- Language pitfalls
- One language per doc
- One language per field
- Mixed language fields
- Conclusion
- Identifying words
- Intro
- Standard analyzer
- Standard tokenizer
- ICU plugin
- ICU tokenizer
- Tidying text
- Token normalization
- Intro
- Lowercasing
- Removing diacritics
- Unicode world
- Case folding
- Character folding
- Sorting and collations
- Stemming
- Intro
- Algorithmic stemmers
- Dictionary stemmers
- Hunspell stemmer
- Choosing a stemmer
- Controlling stemming
- Stemming in situ
- Stopwords
- Intro
- Using stopwords
- Stopwords and performance
- Divide and conquer
- Phrase queries
- Common grams
- Relevance
- Synonyms
- Intro
- Using synonyms
- Synonym formats
- Expand contract
- Analysis chain
- Multi word synonyms
- Symbol synonyms
- Fuzzy matching
- Intro
- Fuzziness
- Fuzzy query
- Fuzzy match query
- Scoring fuzziness
- Phonetic matching
- Aggregations
- overview
- circuit breaker fd settings
- filtering
- facets
- docvalues
- eager
- breadth vs depth
- Conclusion
- concepts buckets
- basic example
- add metric
- nested bucket
- extra metrics
- bucket metric list
- histogram
- date histogram
- scope
- filtering
- sorting ordering
- approx intro
- cardinality
- percentiles
- sigterms intro
- sigterms
- fielddata
- analyzed vs not
- 地理坐标点
- 地理坐标点
- 通过地理坐标点过滤
- 地理坐标盒模型过滤器
- 地理距离过滤器
- 缓存地理位置过滤器
- 减少内存占用
- 按距离排序
- Geohashe
- Geohashe
- Geohashe映射
- Geohash单元过滤器
- 地理位置聚合
- 地理位置聚合
- 按距离聚合
- Geohash单元聚合器
- 范围(边界)聚合器
- 地理形状
- 地理形状
- 映射地理形状
- 索引地理形状
- 查询地理形状
- 在查询中使用已索引的形状
- 地理形状的过滤与缓存
- 关系
- 关系
- 应用级别的Join操作
- 扁平化你的数据
- Top hits
- Concurrency
- Concurrency solutions
- 嵌套
- 嵌套对象
- 嵌套映射
- 嵌套查询
- 嵌套排序
- 嵌套集合
- Parent Child
- Parent child
- Indexing parent child
- Has child
- Has parent
- Children agg
- Grandparents
- Practical considerations
- Scaling
- Shard
- Overallocation
- Kagillion shards
- Capacity planning
- Replica shards
- Multiple indices
- Index per timeframe
- Index templates
- Retiring data
- Index per user
- Shared index
- Faking it
- One big user
- Scale is not infinite
- Cluster Admin
- Marvel
- Health
- Node stats
- Other stats
- Deployment
- hardware
- other
- config
- dont touch
- heap
- file descriptors
- conclusion
- cluster settings
- Post Deployment
- dynamic settings
- logging
- indexing perf
- rolling restart
- backup
- restore
- conclusion