[[ngrams-compound-words]]
=== Ngrams for Compound Words
Finally, let's take a look at how n-grams can be used to search languages with
compound words. ((("languages", "using many compound words, indexing of")))((("n-grams", "using with compound words")))((("partial matching", "using n-grams for compound words")))((("German", "compound words in"))) German is famous for combining several small words into one
massive compound word in order to capture precise or complex meanings. For
example:
_Aussprachewörterbuch_::
Pronunciation dictionary
_Militärgeschichte_::
Military history
_Weißkopfseeadler_::
White-headed sea eagle, or bald eagle
_Weltgesundheitsorganisation_::
World Health Organization
_Rindfleischetikettierungsüberwachungsaufgabenübertragungsgesetz_::
The law concerning the delegation of duties for the supervision of cattle
marking and the labeling of beef
Somebody searching for ``Wörterbuch'' (dictionary) would probably expect to
see ``Aussprachewörtebuch'' in the results list. Similarly, a search for
``Adler'' (eagle) should include ``Weißkopfseeadler.''
One approach to indexing languages like this is to break compound words into
their constituent parts using the http://bit.ly/1ygdjjC[compound word token filter].
However, the quality of the results depends on how good your compound-word
dictionary is.
Another approach is just to break all words into n-grams and to search for any
matching fragments--the more fragments that match, the more relevant the
document.
Given that an n-gram is a moving window on a word, an n-gram of any length
will cover all of the word. We want to choose a length that is long enough
to be meaningful, but not so long that we produce far too many unique terms.
A _trigram_ (length 3) is ((("trigrams")))probably a good starting point:
[source,js]
--------------------------------------------------
PUT /my_index
{
"settings": {
"analysis": {
"filter": {
"trigrams_filter": {
"type": "ngram",
"min_gram": 3,
"max_gram": 3
}
},
"analyzer": {
"trigrams": {
"type": "custom",
"tokenizer": "standard",
"filter": [
"lowercase",
"trigrams_filter"
]
}
}
}
},
"mappings": {
"my_type": {
"properties": {
"text": {
"type": "string",
"analyzer": "trigrams" <1>
}
}
}
}
}
--------------------------------------------------
// SENSE: 130_Partial_Matching/40_Compound_words.json
<1> The `text` field uses the `trigrams` analyzer to index its contents as
n-grams of length 3.
Testing the trigrams analyzer with the `analyze` API
[source,js]
--------------------------------------------------
GET /my_index/_analyze?analyzer=trigrams
Weißkopfseeadler
--------------------------------------------------
// SENSE: 130_Partial_Matching/40_Compound_words.json
returns these terms:
wei, eiß, ißk, ßko, kop, opf, pfs, fse, see, eea,ead, adl, dle, ler
We can index our example compound words to test this approach:
[source,js]
--------------------------------------------------
POST /my_index/my_type/_bulk
{ "index": { "_id": 1 }}
{ "text": "Aussprachewörterbuch" }
{ "index": { "_id": 2 }}
{ "text": "Militärgeschichte" }
{ "index": { "_id": 3 }}
{ "text": "Weißkopfseeadler" }
{ "index": { "_id": 4 }}
{ "text": "Weltgesundheitsorganisation" }
{ "index": { "_id": 5 }}
{ "text": "Rindfleischetikettierungsüberwachungsaufgabenübertragungsgesetz" }
--------------------------------------------------
// SENSE: 130_Partial_Matching/40_Compound_words.json
A search for ``Adler'' (eagle) becomes a query for the three terms `adl`, `dle`,
and `ler`:
[source,js]
--------------------------------------------------
GET /my_index/my_type/_search
{
"query": {
"match": {
"text": "Adler"
}
}
}
--------------------------------------------------
// SENSE: 130_Partial_Matching/40_Compound_words.json
which correctly matches ``Weißkopfsee-__adler__'':
[source,js]
--------------------------------------------------
{
"hits": [
{
"_id": "3",
"_score": 3.3191128,
"_source": {
"text": "Weißkopfseeadler"
}
}
]
}
--------------------------------------------------
// SENSE: 130_Partial_Matching/40_Compound_words.json
A similar query for ``Gesundheit'' (health) correctly matches
``Welt-__gesundheit__-sorganisation,'' but it also matches
``Militär-__ges__-chichte'' and
``Rindfleischetikettierungsüberwachungsaufgabenübertragungs-__ges__-etz,''
both of which also contain the trigram `ges`.
Judicious use of the `minimum_should_match` parameter can remove these
spurious results by requiring that a minimum number of trigrams must be
present for a document to be considered a match:
[source,js]
--------------------------------------------------
GET /my_index/my_type/_search
{
"query": {
"match": {
"text": {
"query": "Gesundheit",
"minimum_should_match": "80%"
}
}
}
}
--------------------------------------------------
// SENSE: 130_Partial_Matching/40_Compound_words.json
This is a bit of a shotgun approach to full-text search and can result in a
large inverted index, but it is an effective generic way of indexing languages
that use many compound words or that don't use whitespace between words,
such as Thai.
This technique is used to increase _recall_—the number of relevant
documents that a search returns. It is usually used in combination with
other techniques, such as shingles (see <<shingles>>) to improve precision and
the relevance score of each document.
- Introduction
- 入门
- 是什么
- 安装
- API
- 文档
- 索引
- 搜索
- 聚合
- 小结
- 分布式
- 结语
- 分布式集群
- 空集群
- 集群健康
- 添加索引
- 故障转移
- 横向扩展
- 更多扩展
- 应对故障
- 数据
- 文档
- 索引
- 获取
- 存在
- 更新
- 创建
- 删除
- 版本控制
- 局部更新
- Mget
- 批量
- 结语
- 分布式增删改查
- 路由
- 分片交互
- 新建、索引和删除
- 检索
- 局部更新
- 批量请求
- 批量格式
- 搜索
- 空搜索
- 多索引和多类型
- 分页
- 查询字符串
- 映射和分析
- 数据类型差异
- 确切值对决全文
- 倒排索引
- 分析
- 映射
- 复合类型
- 结构化查询
- 请求体查询
- 结构化查询
- 查询与过滤
- 重要的查询子句
- 过滤查询
- 验证查询
- 结语
- 排序
- 排序
- 字符串排序
- 相关性
- 字段数据
- 分布式搜索
- 查询阶段
- 取回阶段
- 搜索选项
- 扫描和滚屏
- 索引管理
- 创建删除
- 设置
- 配置分析器
- 自定义分析器
- 映射
- 根对象
- 元数据中的source字段
- 元数据中的all字段
- 元数据中的ID字段
- 动态映射
- 自定义动态映射
- 默认映射
- 重建索引
- 别名
- 深入分片
- 使文本可以被搜索
- 动态索引
- 近实时搜索
- 持久化变更
- 合并段
- 结构化搜索
- 查询准确值
- 组合过滤
- 查询多个准确值
- 包含,而不是相等
- 范围
- 处理 Null 值
- 缓存
- 过滤顺序
- 全文搜索
- 匹配查询
- 多词查询
- 组合查询
- 布尔匹配
- 增加子句
- 控制分析
- 关联失效
- 多字段搜索
- 多重查询字符串
- 单一查询字符串
- 最佳字段
- 最佳字段查询调优
- 多重匹配查询
- 最多字段查询
- 跨字段对象查询
- 以字段为中心查询
- 全字段查询
- 跨字段查询
- 精确查询
- 模糊匹配
- Phrase matching
- Slop
- Multi value fields
- Scoring
- Relevance
- Performance
- Shingles
- Partial_Matching
- Postcodes
- Prefix query
- Wildcard Regexp
- Match phrase prefix
- Index time
- Ngram intro
- Search as you type
- Compound words
- Relevance
- Scoring theory
- Practical scoring
- Query time boosting
- Query scoring
- Not quite not
- Ignoring TFIDF
- Function score query
- Popularity
- Boosting filtered subsets
- Random scoring
- Decay functions
- Pluggable similarities
- Conclusion
- Language intro
- Intro
- Using
- Configuring
- Language pitfalls
- One language per doc
- One language per field
- Mixed language fields
- Conclusion
- Identifying words
- Intro
- Standard analyzer
- Standard tokenizer
- ICU plugin
- ICU tokenizer
- Tidying text
- Token normalization
- Intro
- Lowercasing
- Removing diacritics
- Unicode world
- Case folding
- Character folding
- Sorting and collations
- Stemming
- Intro
- Algorithmic stemmers
- Dictionary stemmers
- Hunspell stemmer
- Choosing a stemmer
- Controlling stemming
- Stemming in situ
- Stopwords
- Intro
- Using stopwords
- Stopwords and performance
- Divide and conquer
- Phrase queries
- Common grams
- Relevance
- Synonyms
- Intro
- Using synonyms
- Synonym formats
- Expand contract
- Analysis chain
- Multi word synonyms
- Symbol synonyms
- Fuzzy matching
- Intro
- Fuzziness
- Fuzzy query
- Fuzzy match query
- Scoring fuzziness
- Phonetic matching
- Aggregations
- overview
- circuit breaker fd settings
- filtering
- facets
- docvalues
- eager
- breadth vs depth
- Conclusion
- concepts buckets
- basic example
- add metric
- nested bucket
- extra metrics
- bucket metric list
- histogram
- date histogram
- scope
- filtering
- sorting ordering
- approx intro
- cardinality
- percentiles
- sigterms intro
- sigterms
- fielddata
- analyzed vs not
- 地理坐标点
- 地理坐标点
- 通过地理坐标点过滤
- 地理坐标盒模型过滤器
- 地理距离过滤器
- 缓存地理位置过滤器
- 减少内存占用
- 按距离排序
- Geohashe
- Geohashe
- Geohashe映射
- Geohash单元过滤器
- 地理位置聚合
- 地理位置聚合
- 按距离聚合
- Geohash单元聚合器
- 范围(边界)聚合器
- 地理形状
- 地理形状
- 映射地理形状
- 索引地理形状
- 查询地理形状
- 在查询中使用已索引的形状
- 地理形状的过滤与缓存
- 关系
- 关系
- 应用级别的Join操作
- 扁平化你的数据
- Top hits
- Concurrency
- Concurrency solutions
- 嵌套
- 嵌套对象
- 嵌套映射
- 嵌套查询
- 嵌套排序
- 嵌套集合
- Parent Child
- Parent child
- Indexing parent child
- Has child
- Has parent
- Children agg
- Grandparents
- Practical considerations
- Scaling
- Shard
- Overallocation
- Kagillion shards
- Capacity planning
- Replica shards
- Multiple indices
- Index per timeframe
- Index templates
- Retiring data
- Index per user
- Shared index
- Faking it
- One big user
- Scale is not infinite
- Cluster Admin
- Marvel
- Health
- Node stats
- Other stats
- Deployment
- hardware
- other
- config
- dont touch
- heap
- file descriptors
- conclusion
- cluster settings
- Post Deployment
- dynamic settings
- logging
- indexing perf
- rolling restart
- backup
- restore
- conclusion