多应用+插件架构,代码干净,二开方便,首家独创一键云编译技术,文档视频完善,免费商用码云13.8K 广告
[[ngrams-compound-words]] === Ngrams for Compound Words Finally, let's take a look at how n-grams can be used to search languages with compound words. ((("languages", "using many compound words, indexing of")))((("n-grams", "using with compound words")))((("partial matching", "using n-grams for compound words")))((("German", "compound words in"))) German is famous for combining several small words into one massive compound word in order to capture precise or complex meanings. For example: _Aussprachewörterbuch_:: Pronunciation dictionary _Militärgeschichte_:: Military history _Weißkopfseeadler_:: White-headed sea eagle, or bald eagle _Weltgesundheitsorganisation_:: World Health Organization _Rindfleischetikettierungsüberwachungsaufgabenübertragungsgesetz_:: The law concerning the delegation of duties for the supervision of cattle marking and the labeling of beef Somebody searching for ``Wörterbuch'' (dictionary) would probably expect to see ``Aussprachewörtebuch'' in the results list. Similarly, a search for ``Adler'' (eagle) should include ``Weißkopfseeadler.'' One approach to indexing languages like this is to break compound words into their constituent parts using the http://bit.ly/1ygdjjC[compound word token filter]. However, the quality of the results depends on how good your compound-word dictionary is. Another approach is just to break all words into n-grams and to search for any matching fragments--the more fragments that match, the more relevant the document. Given that an n-gram is a moving window on a word, an n-gram of any length will cover all of the word. We want to choose a length that is long enough to be meaningful, but not so long that we produce far too many unique terms. A _trigram_ (length 3) is ((("trigrams")))probably a good starting point: [source,js] -------------------------------------------------- PUT /my_index { "settings": { "analysis": { "filter": { "trigrams_filter": { "type": "ngram", "min_gram": 3, "max_gram": 3 } }, "analyzer": { "trigrams": { "type": "custom", "tokenizer": "standard", "filter": [ "lowercase", "trigrams_filter" ] } } } }, "mappings": { "my_type": { "properties": { "text": { "type": "string", "analyzer": "trigrams" <1> } } } } } -------------------------------------------------- // SENSE: 130_Partial_Matching/40_Compound_words.json <1> The `text` field uses the `trigrams` analyzer to index its contents as n-grams of length 3. Testing the trigrams analyzer with the `analyze` API [source,js] -------------------------------------------------- GET /my_index/_analyze?analyzer=trigrams Weißkopfseeadler -------------------------------------------------- // SENSE: 130_Partial_Matching/40_Compound_words.json returns these terms: wei, eiß, ißk, ßko, kop, opf, pfs, fse, see, eea,ead, adl, dle, ler We can index our example compound words to test this approach: [source,js] -------------------------------------------------- POST /my_index/my_type/_bulk { "index": { "_id": 1 }} { "text": "Aussprachewörterbuch" } { "index": { "_id": 2 }} { "text": "Militärgeschichte" } { "index": { "_id": 3 }} { "text": "Weißkopfseeadler" } { "index": { "_id": 4 }} { "text": "Weltgesundheitsorganisation" } { "index": { "_id": 5 }} { "text": "Rindfleischetikettierungsüberwachungsaufgabenübertragungsgesetz" } -------------------------------------------------- // SENSE: 130_Partial_Matching/40_Compound_words.json A search for ``Adler'' (eagle) becomes a query for the three terms `adl`, `dle`, and `ler`: [source,js] -------------------------------------------------- GET /my_index/my_type/_search { "query": { "match": { "text": "Adler" } } } -------------------------------------------------- // SENSE: 130_Partial_Matching/40_Compound_words.json which correctly matches ``Weißkopfsee-__adler__'': [source,js] -------------------------------------------------- { "hits": [ { "_id": "3", "_score": 3.3191128, "_source": { "text": "Weißkopfseeadler" } } ] } -------------------------------------------------- // SENSE: 130_Partial_Matching/40_Compound_words.json A similar query for ``Gesundheit'' (health) correctly matches ``Welt-__gesundheit__-sorganisation,'' but it also matches ``Militär-__ges__-chichte'' and ``Rindfleischetikettierungsüberwachungsaufgabenübertragungs-__ges__-etz,'' both of which also contain the trigram `ges`. Judicious use of the `minimum_should_match` parameter can remove these spurious results by requiring that a minimum number of trigrams must be present for a document to be considered a match: [source,js] -------------------------------------------------- GET /my_index/my_type/_search { "query": { "match": { "text": { "query": "Gesundheit", "minimum_should_match": "80%" } } } } -------------------------------------------------- // SENSE: 130_Partial_Matching/40_Compound_words.json This is a bit of a shotgun approach to full-text search and can result in a large inverted index, but it is an effective generic way of indexing languages that use many compound words or that don't use whitespace between words, such as Thai. This technique is used to increase _recall_&#x2014;the number of relevant documents that a search returns. It is usually used in combination with other techniques, such as shingles (see <<shingles>>) to improve precision and the relevance score of each document.