[[function-score-filters]]
=== Boosting Filtered Subsets
Let's return to the problem that we were dealing with in <<ignoring-tfidf>>,
where we wanted to score((("boosting", "filtered subsets")))((("relevance", "controlling", "boosting filtered subsets"))) vacation homes by the number of features that each
home possesses. We ended that section by wishing for a way to use cached
filters to affect the score, and with the `function_score` query we can do
just that.((("function_score query", "boosting filtered subsets")))
The examples we have shown thus far have used a single function for all
documents. Now we want to divide the results into subsets by using filters (one
filter per feature), and apply a different function to each subset.
The function that we will use in this example is ((("weight function")))the `weight`, which is
similar to the `boost` parameter accepted by any query. The difference is
that the `weight` is not normalized by Lucene into some obscure floating-point
number; it is used as is.
The structure of the query has to change somewhat to incorporate multiple
functions:
[source,json]
--------------------------------
GET /_search
{
"query": {
"function_score": {
"filter": { <1>
"term": { "city": "Barcelona" }
},
"functions": [ <2>
{
"filter": { "term": { "features": "wifi" }}, <3>
"weight": 1
},
{
"filter": { "term": { "features": "garden" }}, <3>
"weight": 1
},
{
"filter": { "term": { "features": "pool" }}, <3>
"weight": 2 <4>
}
],
"score_mode": "sum", <5>
}
}
}
--------------------------------
<1> This `function_score` query has a `filter` instead of a `query`.
<2> The `functions` key holds a list of functions that should be applied.
<3> The function is applied only if the document matches the (optional) `filter`.
<4> The `pool` feature is more important than the others so it has a higher `weight`.
<5> The `score_mode` specifies how the values from each function should be combined.
The new features to note in this example are explained in the following sections.
==== filter Versus query
The first thing to note is that we have specified a `filter` instead ((("filters", "in function_score query")))of a
`query`. In this example, we do not need full-text search. We just want to
return all documents that have `Barcelona` in the `city` field, logic that is
better expressed as a filter instead of a query. All documents returned by
the filter will have a `_score` of `1`. The `function_score` query accepts
either a `query` or a `filter`. If neither is specified, it will default to
using the `match_all` query.
==== functions
The `functions` key holds an array of functions to apply.((("function_score query", "functions key"))) Each entry in the
array may also optionally specify a `filter`, in which case the function will be applied only to documents that match that filter. In this example, we
apply a `weight` of `1` (or `2` in the case of `pool`) to any document
that matches the filter.
==== score_mode
Each function returns a result, and we need a way of reducing these multiple
results to a single value that can be combined with the original `_score`.
This is the role ((("function_score query", "score_mode parameter")))((("score_mode parameter")))of the `score_mode` parameter, which accepts the following
values:
`multiply`::
Function results are multiplied together (default).
`sum`::
Function results are added up.
`avg`::
The average of all the function results.
`max`::
The highest function result is used.
`min`::
The lowest function result is used.
`first`::
Uses only the result from the first function that either doesn't have a filter or that has a filter matching the document.
In this case, we want to add the `weight` results from each matching
filter together to produce the final score, so we have used the `sum` score
mode.
Documents that don't match any of the filters will keep their original
`_score` of `1`.
- Introduction
- 入门
- 是什么
- 安装
- API
- 文档
- 索引
- 搜索
- 聚合
- 小结
- 分布式
- 结语
- 分布式集群
- 空集群
- 集群健康
- 添加索引
- 故障转移
- 横向扩展
- 更多扩展
- 应对故障
- 数据
- 文档
- 索引
- 获取
- 存在
- 更新
- 创建
- 删除
- 版本控制
- 局部更新
- Mget
- 批量
- 结语
- 分布式增删改查
- 路由
- 分片交互
- 新建、索引和删除
- 检索
- 局部更新
- 批量请求
- 批量格式
- 搜索
- 空搜索
- 多索引和多类型
- 分页
- 查询字符串
- 映射和分析
- 数据类型差异
- 确切值对决全文
- 倒排索引
- 分析
- 映射
- 复合类型
- 结构化查询
- 请求体查询
- 结构化查询
- 查询与过滤
- 重要的查询子句
- 过滤查询
- 验证查询
- 结语
- 排序
- 排序
- 字符串排序
- 相关性
- 字段数据
- 分布式搜索
- 查询阶段
- 取回阶段
- 搜索选项
- 扫描和滚屏
- 索引管理
- 创建删除
- 设置
- 配置分析器
- 自定义分析器
- 映射
- 根对象
- 元数据中的source字段
- 元数据中的all字段
- 元数据中的ID字段
- 动态映射
- 自定义动态映射
- 默认映射
- 重建索引
- 别名
- 深入分片
- 使文本可以被搜索
- 动态索引
- 近实时搜索
- 持久化变更
- 合并段
- 结构化搜索
- 查询准确值
- 组合过滤
- 查询多个准确值
- 包含,而不是相等
- 范围
- 处理 Null 值
- 缓存
- 过滤顺序
- 全文搜索
- 匹配查询
- 多词查询
- 组合查询
- 布尔匹配
- 增加子句
- 控制分析
- 关联失效
- 多字段搜索
- 多重查询字符串
- 单一查询字符串
- 最佳字段
- 最佳字段查询调优
- 多重匹配查询
- 最多字段查询
- 跨字段对象查询
- 以字段为中心查询
- 全字段查询
- 跨字段查询
- 精确查询
- 模糊匹配
- Phrase matching
- Slop
- Multi value fields
- Scoring
- Relevance
- Performance
- Shingles
- Partial_Matching
- Postcodes
- Prefix query
- Wildcard Regexp
- Match phrase prefix
- Index time
- Ngram intro
- Search as you type
- Compound words
- Relevance
- Scoring theory
- Practical scoring
- Query time boosting
- Query scoring
- Not quite not
- Ignoring TFIDF
- Function score query
- Popularity
- Boosting filtered subsets
- Random scoring
- Decay functions
- Pluggable similarities
- Conclusion
- Language intro
- Intro
- Using
- Configuring
- Language pitfalls
- One language per doc
- One language per field
- Mixed language fields
- Conclusion
- Identifying words
- Intro
- Standard analyzer
- Standard tokenizer
- ICU plugin
- ICU tokenizer
- Tidying text
- Token normalization
- Intro
- Lowercasing
- Removing diacritics
- Unicode world
- Case folding
- Character folding
- Sorting and collations
- Stemming
- Intro
- Algorithmic stemmers
- Dictionary stemmers
- Hunspell stemmer
- Choosing a stemmer
- Controlling stemming
- Stemming in situ
- Stopwords
- Intro
- Using stopwords
- Stopwords and performance
- Divide and conquer
- Phrase queries
- Common grams
- Relevance
- Synonyms
- Intro
- Using synonyms
- Synonym formats
- Expand contract
- Analysis chain
- Multi word synonyms
- Symbol synonyms
- Fuzzy matching
- Intro
- Fuzziness
- Fuzzy query
- Fuzzy match query
- Scoring fuzziness
- Phonetic matching
- Aggregations
- overview
- circuit breaker fd settings
- filtering
- facets
- docvalues
- eager
- breadth vs depth
- Conclusion
- concepts buckets
- basic example
- add metric
- nested bucket
- extra metrics
- bucket metric list
- histogram
- date histogram
- scope
- filtering
- sorting ordering
- approx intro
- cardinality
- percentiles
- sigterms intro
- sigterms
- fielddata
- analyzed vs not
- 地理坐标点
- 地理坐标点
- 通过地理坐标点过滤
- 地理坐标盒模型过滤器
- 地理距离过滤器
- 缓存地理位置过滤器
- 减少内存占用
- 按距离排序
- Geohashe
- Geohashe
- Geohashe映射
- Geohash单元过滤器
- 地理位置聚合
- 地理位置聚合
- 按距离聚合
- Geohash单元聚合器
- 范围(边界)聚合器
- 地理形状
- 地理形状
- 映射地理形状
- 索引地理形状
- 查询地理形状
- 在查询中使用已索引的形状
- 地理形状的过滤与缓存
- 关系
- 关系
- 应用级别的Join操作
- 扁平化你的数据
- Top hits
- Concurrency
- Concurrency solutions
- 嵌套
- 嵌套对象
- 嵌套映射
- 嵌套查询
- 嵌套排序
- 嵌套集合
- Parent Child
- Parent child
- Indexing parent child
- Has child
- Has parent
- Children agg
- Grandparents
- Practical considerations
- Scaling
- Shard
- Overallocation
- Kagillion shards
- Capacity planning
- Replica shards
- Multiple indices
- Index per timeframe
- Index templates
- Retiring data
- Index per user
- Shared index
- Faking it
- One big user
- Scale is not infinite
- Cluster Admin
- Marvel
- Health
- Node stats
- Other stats
- Deployment
- hardware
- other
- config
- dont touch
- heap
- file descriptors
- conclusion
- cluster settings
- Post Deployment
- dynamic settings
- logging
- indexing perf
- rolling restart
- backup
- restore
- conclusion