ThinkChat2.0新版上线,更智能更精彩,支持会话、画图、阅读、搜索等,送10W Token,即刻开启你的AI之旅 广告
[[using-language-analyzers]] === Using Language Analyzers The built-in language analyzers are available globally and don't need to be configured before being used.((("language analyzers", "using"))) They can be specified directly in the field mapping: [source,js] -------------------------------------------------- PUT /my_index { "mappings": { "blog": { "properties": { "title": { "type": "string", "analyzer": "english" <1> } } } } } -------------------------------------------------- <1> The `title` field will use the `english` analyzer instead of the default `standard` analyzer. Of course, by passing ((("english analyzer", "information lost with")))text through the `english` analyzer, we lose information: [source,js] -------------------------------------------------- GET /my_index/_analyze?field=title <1> I'm not happy about the foxes -------------------------------------------------- <1> Emits token: `i'm`, `happi`, `about`, `fox` We can't tell if the document mentions one `fox` or many `foxes`; the word `not` is a stopword and is removed, so we can't tell whether the document is happy about foxes or not. By using the `english` analyzer, we have increased recall as we can match more loosely, but we have reduced our ability to rank documents accurately. To get the best of both worlds, we can use <<multi-fields,multifields>> to index the `title` field twice: once((("multifields", "using to index a field with two different analyzers"))) with the `english` analyzer and once with the `standard` analyzer: [source,js] -------------------------------------------------- PUT /my_index { "mappings": { "blog": { "properties": { "title": { <1> "type": "string", "fields": { "english": { <2> "type": "string", "analyzer": "english" } } } } } } } -------------------------------------------------- <1> The main `title` field uses the `standard` analyzer. <2> The `title.english` subfield uses the `english` analyzer. With this mapping in place, we can index some test documents to demonstrate how to use both fields at query time: [source,js] -------------------------------------------------- PUT /my_index/blog/1 { "title": "I'm happy for this fox" } PUT /my_index/blog/2 { "title": "I'm not happy about my fox problem" } GET /_search { "query": { "multi_match": { "type": "most_fields", <1> "query": "not happy foxes", "fields": [ "title", "title.english" ] } } } -------------------------------------------------- <1> Use the <<most-fields,`most_fields`>> query type to match the same text in as many fields as possible. Even ((("most fields queries")))though neither of our documents contain the word `foxes`, both documents are returned as results thanks to the word stemming on the `title.english` field. The second document is ranked as more relevant, because the word `not` matches on the `title` field.