[[stemming-in-situ]]
=== Stemming in situ
For the sake of completeness, we will ((("stemming words", "stemming in situ")))finish this chapter by explaining how to
index stemmed words into the same field as unstemmed words. As an example,
analyzing the sentence _The quick foxes jumped_ would produce the following
terms:
[source,text]
------------------------------------
Pos 1: (the)
Pos 2: (quick)
Pos 3: (foxes,fox) <1>
Pos 4: (jumped,jump) <1>
------------------------------------
<1> The stemmed and unstemmed forms occupy the same position.
WARNING: Read <<stemming-in-situ-good-idea>> before using this approach.
To achieve stemming _in situ_, we will use the
http://bit.ly/1ynIBCe[`keyword_repeat`]
token filter,((("keyword_repeat token filter"))) which, like the `keyword_marker` token filter (see
<<preventing-stemming>>), marks each term as a keyword to prevent the subsequent
stemmer from touching it. However, it also repeats the term in the same
position, and this repeated term *is* stemmed.
Using the `keyword_repeat` token filter alone would result in the following:
[source,text]
------------------------------------
Pos 1: (the,the) <1>
Pos 2: (quick,quick) <1>
Pos 3: (foxes,fox)
Pos 4: (jumped,jump)
------------------------------------
<1> The stemmed and unstemmed forms are the same, and so are repeated
needlessly.
To prevent the useless repetition of terms that are the same in their stemmed
and unstemmed forms, we add the
http://bit.ly/1B6xHUY[`unique`] token filter((("unique token filter"))) into the mix:
[source,json]
------------------------------------
PUT /my_index
{
"settings": {
"analysis": {
"filter": {
"unique_stem": {
"type": "unique",
"only_on_same_position": true <1>
}
},
"analyzer": {
"in_situ": {
"tokenizer": "standard",
"filter": [
"lowercase",
"keyword_repeat", <2>
"porter_stem",
"unique_stem" <3>
]
}
}
}
}
}
------------------------------------
<1> The `unique` token filter is set to remove duplicate tokens
only when they occur in the same position.
<2> The `keyword_repeat` token filter must appear before the
stemmer.
<3> The `unique_stem` filter removes duplicate terms after the
stemmer has done its work.
[[stemming-in-situ-good-idea]]
==== Is Stemming in situ a Good Idea
People like the ((("stemming words", "stemming in situ", "good idea, or not")))idea of stemming _in situ_: ``Why use an unstemmed field
_and_ a stemmed field if I can just use one combined field?'' But is it a
good idea? The answer is almost always no. There are two problems.
The first is the inability to separate exact matches from inexact matches. In
this chapter, we have seen that words with different meanings are often
conflated to the same stem word: `organs` and `organization` both stem to
`organ`.
In <<using-language-analyzers>>, we demonstrated how to combine a query on a
stemmed field (to increase recall) with a query on an unstemmed field (to
improve relevance).((("language analyzers", "combining query on stemmed and unstemmed field"))) When the stemmed and unstemmed fields are separate, the
contribution of each field can be tuned by boosting one field over another
(see <<prioritising-clauses>>). If, instead, the stemmed and unstemmed forms
appear in the same field, there is no way to tune your search results.
The second issue has to do with how the ((("relevance scores", "stemming in situ and")))relevance score is calculated. In
<<relevance-intro>>, we explained that part of the calculation depends on the
_inverse document frequency_ -- how often a word appears in all the documents
in our index.((("inverse document frequency", "stemming in situ and"))) Using in situ stemming for a document that contains the text
`jump jumped jumps` would result in these terms:
[source,text]
------------------------------------
Pos 1: (jump)
Pos 2: (jumped,jump)
Pos 3: (jumps,jump)
------------------------------------
While `jumped` and `jumps` appear once each and so would have the correct IDF,
`jump` appears three times, greatly reducing its value as a search term in
comparison with the unstemmed forms.
For these reasons, we recommend against using stemming in situ.
- Introduction
- 入门
- 是什么
- 安装
- API
- 文档
- 索引
- 搜索
- 聚合
- 小结
- 分布式
- 结语
- 分布式集群
- 空集群
- 集群健康
- 添加索引
- 故障转移
- 横向扩展
- 更多扩展
- 应对故障
- 数据
- 文档
- 索引
- 获取
- 存在
- 更新
- 创建
- 删除
- 版本控制
- 局部更新
- Mget
- 批量
- 结语
- 分布式增删改查
- 路由
- 分片交互
- 新建、索引和删除
- 检索
- 局部更新
- 批量请求
- 批量格式
- 搜索
- 空搜索
- 多索引和多类型
- 分页
- 查询字符串
- 映射和分析
- 数据类型差异
- 确切值对决全文
- 倒排索引
- 分析
- 映射
- 复合类型
- 结构化查询
- 请求体查询
- 结构化查询
- 查询与过滤
- 重要的查询子句
- 过滤查询
- 验证查询
- 结语
- 排序
- 排序
- 字符串排序
- 相关性
- 字段数据
- 分布式搜索
- 查询阶段
- 取回阶段
- 搜索选项
- 扫描和滚屏
- 索引管理
- 创建删除
- 设置
- 配置分析器
- 自定义分析器
- 映射
- 根对象
- 元数据中的source字段
- 元数据中的all字段
- 元数据中的ID字段
- 动态映射
- 自定义动态映射
- 默认映射
- 重建索引
- 别名
- 深入分片
- 使文本可以被搜索
- 动态索引
- 近实时搜索
- 持久化变更
- 合并段
- 结构化搜索
- 查询准确值
- 组合过滤
- 查询多个准确值
- 包含,而不是相等
- 范围
- 处理 Null 值
- 缓存
- 过滤顺序
- 全文搜索
- 匹配查询
- 多词查询
- 组合查询
- 布尔匹配
- 增加子句
- 控制分析
- 关联失效
- 多字段搜索
- 多重查询字符串
- 单一查询字符串
- 最佳字段
- 最佳字段查询调优
- 多重匹配查询
- 最多字段查询
- 跨字段对象查询
- 以字段为中心查询
- 全字段查询
- 跨字段查询
- 精确查询
- 模糊匹配
- Phrase matching
- Slop
- Multi value fields
- Scoring
- Relevance
- Performance
- Shingles
- Partial_Matching
- Postcodes
- Prefix query
- Wildcard Regexp
- Match phrase prefix
- Index time
- Ngram intro
- Search as you type
- Compound words
- Relevance
- Scoring theory
- Practical scoring
- Query time boosting
- Query scoring
- Not quite not
- Ignoring TFIDF
- Function score query
- Popularity
- Boosting filtered subsets
- Random scoring
- Decay functions
- Pluggable similarities
- Conclusion
- Language intro
- Intro
- Using
- Configuring
- Language pitfalls
- One language per doc
- One language per field
- Mixed language fields
- Conclusion
- Identifying words
- Intro
- Standard analyzer
- Standard tokenizer
- ICU plugin
- ICU tokenizer
- Tidying text
- Token normalization
- Intro
- Lowercasing
- Removing diacritics
- Unicode world
- Case folding
- Character folding
- Sorting and collations
- Stemming
- Intro
- Algorithmic stemmers
- Dictionary stemmers
- Hunspell stemmer
- Choosing a stemmer
- Controlling stemming
- Stemming in situ
- Stopwords
- Intro
- Using stopwords
- Stopwords and performance
- Divide and conquer
- Phrase queries
- Common grams
- Relevance
- Synonyms
- Intro
- Using synonyms
- Synonym formats
- Expand contract
- Analysis chain
- Multi word synonyms
- Symbol synonyms
- Fuzzy matching
- Intro
- Fuzziness
- Fuzzy query
- Fuzzy match query
- Scoring fuzziness
- Phonetic matching
- Aggregations
- overview
- circuit breaker fd settings
- filtering
- facets
- docvalues
- eager
- breadth vs depth
- Conclusion
- concepts buckets
- basic example
- add metric
- nested bucket
- extra metrics
- bucket metric list
- histogram
- date histogram
- scope
- filtering
- sorting ordering
- approx intro
- cardinality
- percentiles
- sigterms intro
- sigterms
- fielddata
- analyzed vs not
- 地理坐标点
- 地理坐标点
- 通过地理坐标点过滤
- 地理坐标盒模型过滤器
- 地理距离过滤器
- 缓存地理位置过滤器
- 减少内存占用
- 按距离排序
- Geohashe
- Geohashe
- Geohashe映射
- Geohash单元过滤器
- 地理位置聚合
- 地理位置聚合
- 按距离聚合
- Geohash单元聚合器
- 范围(边界)聚合器
- 地理形状
- 地理形状
- 映射地理形状
- 索引地理形状
- 查询地理形状
- 在查询中使用已索引的形状
- 地理形状的过滤与缓存
- 关系
- 关系
- 应用级别的Join操作
- 扁平化你的数据
- Top hits
- Concurrency
- Concurrency solutions
- 嵌套
- 嵌套对象
- 嵌套映射
- 嵌套查询
- 嵌套排序
- 嵌套集合
- Parent Child
- Parent child
- Indexing parent child
- Has child
- Has parent
- Children agg
- Grandparents
- Practical considerations
- Scaling
- Shard
- Overallocation
- Kagillion shards
- Capacity planning
- Replica shards
- Multiple indices
- Index per timeframe
- Index templates
- Retiring data
- Index per user
- Shared index
- Faking it
- One big user
- Scale is not infinite
- Cluster Admin
- Marvel
- Health
- Node stats
- Other stats
- Deployment
- hardware
- other
- config
- dont touch
- heap
- file descriptors
- conclusion
- cluster settings
- Post Deployment
- dynamic settings
- logging
- indexing perf
- rolling restart
- backup
- restore
- conclusion