[[multi-word-synonyms]]
=== Multiword Synonyms and Phrase Queries
So far, synonyms appear to be quite straightforward. Unfortunately, this is
where things start to go wrong.((("synonyms", "multiword, and phrase queries")))((("phrase matching", "multiword synonyms and"))) For <<phrase-matching,phrase queries>> to
function correctly, Elasticsearch needs to know the position that each term
occupies in the original text. Multiword synonyms can play havoc with term
positions, especially when the injected synonyms are of differing lengths.
To demonstrate, we'll create a synonym token filter that uses this rule:
"usa,united states,u s a,united states of america"
[source,json]
-----------------------------------
PUT /my_index
{
"settings": {
"analysis": {
"filter": {
"my_synonym_filter": {
"type": "synonym",
"synonyms": [
"usa,united states,u s a,united states of america"
]
}
},
"analyzer": {
"my_synonyms": {
"tokenizer": "standard",
"filter": [
"lowercase",
"my_synonym_filter"
]
}
}
}
}
}
GET /my_index/_analyze?analyzer=my_synonyms&text=
The United States is wealthy
-----------------------------------
The tokens emitted by the `analyze` request look like this:
[source,text]
-----------------------------------
Pos 1: (the)
Pos 2: (usa,united,u,united)
Pos 3: (states,s,states)
Pos 4: (is,a,of)
Pos 5: (wealthy,america)
-----------------------------------
If we were to index a document analyzed with synonyms as above, and then run a
phrase query without synonyms, we'd have some surprising results. These
phrases would not match:
* The usa is wealthy
* The united states of america is wealthy
* The U.S.A. is wealthy
However, these phrases would:
* United states is wealthy
* Usa states of wealthy
* The U.S. of wealthy
* U.S. is america
If we were to use synonyms at query time instead, we would see even more-bizarre matches. Look at the output of this `validate-query` request:
[source,json]
-----------------------------------
GET /my_index/_validate/query?explain
{
"query": {
"match_phrase": {
"text": {
"query": "usa is wealthy",
"analyzer": "my_synonyms"
}
}
}
}
-----------------------------------
The explanation is as follows:
"(usa united u united) (is states s states) (wealthy a of) america"
This would match documents containg `u is of america` but wouldn't match any
document that didn't contain the term `america`.
[TIP]
==================================================
Multiword synonyms ((("highlighting searches", "multiword synonyms and")))affect highlighting in a similar way. A query for `USA`
could end up returning a highlighted snippet such as: ``The _United States
is wealthy_''.
==================================================
==== Use Simple Contraction for Phrase Queries
The way to avoid this mess is to use <<synonyms-contraction,simple contraction>>
to inject a single((("synonyms", "multiword, and phrase queries", "using simple contraction")))((("phrase matching", "multiword synonyms and", "using simple contraction")))((("simple contraction (synonyms)", "using for phrase queries"))) term that represents all synonyms, and to use the same
synonym token filter at query time:
[source,json]
-----------------------------------
PUT /my_index
{
"settings": {
"analysis": {
"filter": {
"my_synonym_filter": {
"type": "synonym",
"synonyms": [
"united states,u s a,united states of america=>usa"
]
}
},
"analyzer": {
"my_synonyms": {
"tokenizer": "standard",
"filter": [
"lowercase",
"my_synonym_filter"
]
}
}
}
}
}
GET /my_index/_analyze?analyzer=my_synonyms
The United States is wealthy
-----------------------------------
The result of the preceding `analyze` request looks much more sane:
[source,text]
-----------------------------------
Pos 1: (the)
Pos 2: (usa)
Pos 3: (is)
Pos 5: (wealthy)
-----------------------------------
And repeating the `validate-query` request that we made previously yields a simple,
sane explanation:
"usa is wealthy"
The downside of this approach is that, by reducing `united states of america`
down to the single term `usa`, you can't use the same field to find just the
word `united` or `states`. You would need to use a separate field with a
different analysis chain for that purpose.
==== Synonyms and the query_string Query
We have tried to avoid discussing the `query_string` query ((("query strings", "synonyms and")))((("synonyms", "multiword, and query string queries")))because we don't
recommend using it. In <<query-string-query, "More-Complicated Queries">>, we said that, because the
`query_string` query supports a terse mini _search-syntax_, it could
frequently lead to surprising results or even syntax errors.
One of the gotchas of this query involves multiword synonyms. To
support its search-syntax, it has to parse the query string to recognize
special operators like `AND`, `OR`, `+`, `-`, `field:`, and so forth. (See the full
http://bit.ly/151G5I1[`query_string` syntax]
here.)
As part of this parsing process, it breaks up the query string on whitespace,
and passes each word that it finds to the relevant analyzer separately. This
means that your synonym analyzer will never receive a multiword synonym.
Instead of seeing `United States` as a single string, the analyzer will
receive `United` and `States` separately.
Fortunately, the trustworthy `match` query supports no such syntax, and
multiword synonyms will be passed to the analyzer in their entirety.
- Introduction
- 入门
- 是什么
- 安装
- API
- 文档
- 索引
- 搜索
- 聚合
- 小结
- 分布式
- 结语
- 分布式集群
- 空集群
- 集群健康
- 添加索引
- 故障转移
- 横向扩展
- 更多扩展
- 应对故障
- 数据
- 文档
- 索引
- 获取
- 存在
- 更新
- 创建
- 删除
- 版本控制
- 局部更新
- Mget
- 批量
- 结语
- 分布式增删改查
- 路由
- 分片交互
- 新建、索引和删除
- 检索
- 局部更新
- 批量请求
- 批量格式
- 搜索
- 空搜索
- 多索引和多类型
- 分页
- 查询字符串
- 映射和分析
- 数据类型差异
- 确切值对决全文
- 倒排索引
- 分析
- 映射
- 复合类型
- 结构化查询
- 请求体查询
- 结构化查询
- 查询与过滤
- 重要的查询子句
- 过滤查询
- 验证查询
- 结语
- 排序
- 排序
- 字符串排序
- 相关性
- 字段数据
- 分布式搜索
- 查询阶段
- 取回阶段
- 搜索选项
- 扫描和滚屏
- 索引管理
- 创建删除
- 设置
- 配置分析器
- 自定义分析器
- 映射
- 根对象
- 元数据中的source字段
- 元数据中的all字段
- 元数据中的ID字段
- 动态映射
- 自定义动态映射
- 默认映射
- 重建索引
- 别名
- 深入分片
- 使文本可以被搜索
- 动态索引
- 近实时搜索
- 持久化变更
- 合并段
- 结构化搜索
- 查询准确值
- 组合过滤
- 查询多个准确值
- 包含,而不是相等
- 范围
- 处理 Null 值
- 缓存
- 过滤顺序
- 全文搜索
- 匹配查询
- 多词查询
- 组合查询
- 布尔匹配
- 增加子句
- 控制分析
- 关联失效
- 多字段搜索
- 多重查询字符串
- 单一查询字符串
- 最佳字段
- 最佳字段查询调优
- 多重匹配查询
- 最多字段查询
- 跨字段对象查询
- 以字段为中心查询
- 全字段查询
- 跨字段查询
- 精确查询
- 模糊匹配
- Phrase matching
- Slop
- Multi value fields
- Scoring
- Relevance
- Performance
- Shingles
- Partial_Matching
- Postcodes
- Prefix query
- Wildcard Regexp
- Match phrase prefix
- Index time
- Ngram intro
- Search as you type
- Compound words
- Relevance
- Scoring theory
- Practical scoring
- Query time boosting
- Query scoring
- Not quite not
- Ignoring TFIDF
- Function score query
- Popularity
- Boosting filtered subsets
- Random scoring
- Decay functions
- Pluggable similarities
- Conclusion
- Language intro
- Intro
- Using
- Configuring
- Language pitfalls
- One language per doc
- One language per field
- Mixed language fields
- Conclusion
- Identifying words
- Intro
- Standard analyzer
- Standard tokenizer
- ICU plugin
- ICU tokenizer
- Tidying text
- Token normalization
- Intro
- Lowercasing
- Removing diacritics
- Unicode world
- Case folding
- Character folding
- Sorting and collations
- Stemming
- Intro
- Algorithmic stemmers
- Dictionary stemmers
- Hunspell stemmer
- Choosing a stemmer
- Controlling stemming
- Stemming in situ
- Stopwords
- Intro
- Using stopwords
- Stopwords and performance
- Divide and conquer
- Phrase queries
- Common grams
- Relevance
- Synonyms
- Intro
- Using synonyms
- Synonym formats
- Expand contract
- Analysis chain
- Multi word synonyms
- Symbol synonyms
- Fuzzy matching
- Intro
- Fuzziness
- Fuzzy query
- Fuzzy match query
- Scoring fuzziness
- Phonetic matching
- Aggregations
- overview
- circuit breaker fd settings
- filtering
- facets
- docvalues
- eager
- breadth vs depth
- Conclusion
- concepts buckets
- basic example
- add metric
- nested bucket
- extra metrics
- bucket metric list
- histogram
- date histogram
- scope
- filtering
- sorting ordering
- approx intro
- cardinality
- percentiles
- sigterms intro
- sigterms
- fielddata
- analyzed vs not
- 地理坐标点
- 地理坐标点
- 通过地理坐标点过滤
- 地理坐标盒模型过滤器
- 地理距离过滤器
- 缓存地理位置过滤器
- 减少内存占用
- 按距离排序
- Geohashe
- Geohashe
- Geohashe映射
- Geohash单元过滤器
- 地理位置聚合
- 地理位置聚合
- 按距离聚合
- Geohash单元聚合器
- 范围(边界)聚合器
- 地理形状
- 地理形状
- 映射地理形状
- 索引地理形状
- 查询地理形状
- 在查询中使用已索引的形状
- 地理形状的过滤与缓存
- 关系
- 关系
- 应用级别的Join操作
- 扁平化你的数据
- Top hits
- Concurrency
- Concurrency solutions
- 嵌套
- 嵌套对象
- 嵌套映射
- 嵌套查询
- 嵌套排序
- 嵌套集合
- Parent Child
- Parent child
- Indexing parent child
- Has child
- Has parent
- Children agg
- Grandparents
- Practical considerations
- Scaling
- Shard
- Overallocation
- Kagillion shards
- Capacity planning
- Replica shards
- Multiple indices
- Index per timeframe
- Index templates
- Retiring data
- Index per user
- Shared index
- Faking it
- One big user
- Scale is not infinite
- Cluster Admin
- Marvel
- Health
- Node stats
- Other stats
- Deployment
- hardware
- other
- config
- dont touch
- heap
- file descriptors
- conclusion
- cluster settings
- Post Deployment
- dynamic settings
- logging
- indexing perf
- rolling restart
- backup
- restore
- conclusion