== Building Bar Charts
One of the exciting aspects of aggregations are how easily they are converted
into charts and graphs.((("bar charts, building from aggregations", id="ix_barcharts", range="startofrange")))((("aggregations", "building bar charts from"))) In this chapter, we are focusing
on various analytics that we can wring out of our example dataset. We will also
demonstrate the types of charts aggregations can power.
The ++histogram++ bucket is particularly useful.((("buckets", "histogram")))((("histogram bucket")))((("histograms"))) Histograms are essentially
bar charts, and if you've ever built a report or analytics dashboard, you
undoubtedly had a few bar charts in it. The histogram works by specifying an interval. If we were histogramming sale
prices, you might specify an interval of 20,000. This would create a new bucket
every $20,000. Documents are then sorted into buckets.
For our dashboard, we want to know how many cars sold in each price range. We
would also like to know the total revenue generated by that price bracket. This is
calculated by summing the price of each car sold in that interval.
To do this, we use a `histogram` and a nested `sum` metric:
[source,js]
--------------------------------------------------
GET /cars/transactions/_search?search_type=count
{
"aggs":{
"price":{
"histogram":{ <1>
"field": "price",
"interval": 20000
},
"aggs":{
"revenue": {
"sum": { <2>
"field" : "price"
}
}
}
}
}
}
--------------------------------------------------
// SENSE: 300_Aggregations/30_histogram.json
<1> The `histogram` bucket requires two parameters: a numeric field, and an
interval that defines the bucket size.
// Mention use of "size" to get back just the top result?
<2> A `sum` metric is nested inside each price range, which will show us the
total revenue for that bracket
As you can see, our query is built around the `price` aggregation, which contains
a `histogram` bucket. This bucket requires a numeric field to calculate
buckets on, and an interval size. The interval defines how "wide" each bucket
is. An interval of 20000 means we will have the ranges `[0-19999, 20000-39999, ...]`.
Next, we define a nested metric inside the histogram. This is a `sum` metric, which
will sum up the `price` field from each document landing in that price range.
This gives us the revenue for each price range, so we can see if our business
makes more money from commodity or luxury cars.
And here is the response:
[source,js]
--------------------------------------------------
{
...
"aggregations": {
"price": {
"buckets": [
{
"key": 0,
"doc_count": 3,
"revenue": {
"value": 37000
}
},
{
"key": 20000,
"doc_count": 4,
"revenue": {
"value": 95000
}
},
{
"key": 80000,
"doc_count": 1,
"revenue": {
"value": 80000
}
}
]
}
}
}
--------------------------------------------------
The response is fairly self-explanatory, but it should be noted that the
histogram keys correspond to the lower boundary of the interval. The key `0`
means `0-19,999`, the key `20000` means `20,000-39,999`, and so forth.
[NOTE]
=====================
You'll notice that empty intervals, such as $40,000-60,000, is missing in the
response. The `histogram` bucket omits these by default, since it could lead
to the unintended generation of potentially enormous output.
We'll discuss how to include empty buckets in the next section, <<_returning_empty_buckets>>.
=====================
Graphically, you could represent the preceding data in the histogram shown in <<barcharts-histo1>>.
[[barcharts-histo1]]
.Sales and Revenue per price bracket
image::images/elas_28in01.png["Sales and Revenue per price bracket"]
Of course, you can build bar charts with any aggregation that emits categories
and statistics, not just the `histogram` bucket. Let's build a bar chart of
popular makes, and their average price, and then calculate the standard error
to add error bars on our chart. This will use the `terms` bucket
and an `extended_stats` ((("extended_stats metric")))metric:
[source,js]
----
GET /cars/transactions/_search?search_type=count
{
"aggs": {
"makes": {
"terms": {
"field": "make",
"size": 10
},
"aggs": {
"stats": {
"extended_stats": {
"field": "price"
}
}
}
}
}
}
----
This will return a list of makes (sorted by popularity) and a variety of statistics
about each. In particular, we are interested in `stats.avg`, `stats.count`,
and `stats.std_deviation`. Using((("standard error, calculating"))) this information, we can calculate the standard error:
................................
std_err = std_deviation / count
................................
This will allow us to build a chart like <<barcharts-bar1>>.
[[barcharts-bar1]]
.Average price of all makes, with error bars
image::images/elas_28in02.png["Average price of all makes, with error bars"]
((("bar charts, building from aggregations", range="endofrange", startref="ix_barcharts")))
- Introduction
- 入门
- 是什么
- 安装
- API
- 文档
- 索引
- 搜索
- 聚合
- 小结
- 分布式
- 结语
- 分布式集群
- 空集群
- 集群健康
- 添加索引
- 故障转移
- 横向扩展
- 更多扩展
- 应对故障
- 数据
- 文档
- 索引
- 获取
- 存在
- 更新
- 创建
- 删除
- 版本控制
- 局部更新
- Mget
- 批量
- 结语
- 分布式增删改查
- 路由
- 分片交互
- 新建、索引和删除
- 检索
- 局部更新
- 批量请求
- 批量格式
- 搜索
- 空搜索
- 多索引和多类型
- 分页
- 查询字符串
- 映射和分析
- 数据类型差异
- 确切值对决全文
- 倒排索引
- 分析
- 映射
- 复合类型
- 结构化查询
- 请求体查询
- 结构化查询
- 查询与过滤
- 重要的查询子句
- 过滤查询
- 验证查询
- 结语
- 排序
- 排序
- 字符串排序
- 相关性
- 字段数据
- 分布式搜索
- 查询阶段
- 取回阶段
- 搜索选项
- 扫描和滚屏
- 索引管理
- 创建删除
- 设置
- 配置分析器
- 自定义分析器
- 映射
- 根对象
- 元数据中的source字段
- 元数据中的all字段
- 元数据中的ID字段
- 动态映射
- 自定义动态映射
- 默认映射
- 重建索引
- 别名
- 深入分片
- 使文本可以被搜索
- 动态索引
- 近实时搜索
- 持久化变更
- 合并段
- 结构化搜索
- 查询准确值
- 组合过滤
- 查询多个准确值
- 包含,而不是相等
- 范围
- 处理 Null 值
- 缓存
- 过滤顺序
- 全文搜索
- 匹配查询
- 多词查询
- 组合查询
- 布尔匹配
- 增加子句
- 控制分析
- 关联失效
- 多字段搜索
- 多重查询字符串
- 单一查询字符串
- 最佳字段
- 最佳字段查询调优
- 多重匹配查询
- 最多字段查询
- 跨字段对象查询
- 以字段为中心查询
- 全字段查询
- 跨字段查询
- 精确查询
- 模糊匹配
- Phrase matching
- Slop
- Multi value fields
- Scoring
- Relevance
- Performance
- Shingles
- Partial_Matching
- Postcodes
- Prefix query
- Wildcard Regexp
- Match phrase prefix
- Index time
- Ngram intro
- Search as you type
- Compound words
- Relevance
- Scoring theory
- Practical scoring
- Query time boosting
- Query scoring
- Not quite not
- Ignoring TFIDF
- Function score query
- Popularity
- Boosting filtered subsets
- Random scoring
- Decay functions
- Pluggable similarities
- Conclusion
- Language intro
- Intro
- Using
- Configuring
- Language pitfalls
- One language per doc
- One language per field
- Mixed language fields
- Conclusion
- Identifying words
- Intro
- Standard analyzer
- Standard tokenizer
- ICU plugin
- ICU tokenizer
- Tidying text
- Token normalization
- Intro
- Lowercasing
- Removing diacritics
- Unicode world
- Case folding
- Character folding
- Sorting and collations
- Stemming
- Intro
- Algorithmic stemmers
- Dictionary stemmers
- Hunspell stemmer
- Choosing a stemmer
- Controlling stemming
- Stemming in situ
- Stopwords
- Intro
- Using stopwords
- Stopwords and performance
- Divide and conquer
- Phrase queries
- Common grams
- Relevance
- Synonyms
- Intro
- Using synonyms
- Synonym formats
- Expand contract
- Analysis chain
- Multi word synonyms
- Symbol synonyms
- Fuzzy matching
- Intro
- Fuzziness
- Fuzzy query
- Fuzzy match query
- Scoring fuzziness
- Phonetic matching
- Aggregations
- overview
- circuit breaker fd settings
- filtering
- facets
- docvalues
- eager
- breadth vs depth
- Conclusion
- concepts buckets
- basic example
- add metric
- nested bucket
- extra metrics
- bucket metric list
- histogram
- date histogram
- scope
- filtering
- sorting ordering
- approx intro
- cardinality
- percentiles
- sigterms intro
- sigterms
- fielddata
- analyzed vs not
- 地理坐标点
- 地理坐标点
- 通过地理坐标点过滤
- 地理坐标盒模型过滤器
- 地理距离过滤器
- 缓存地理位置过滤器
- 减少内存占用
- 按距离排序
- Geohashe
- Geohashe
- Geohashe映射
- Geohash单元过滤器
- 地理位置聚合
- 地理位置聚合
- 按距离聚合
- Geohash单元聚合器
- 范围(边界)聚合器
- 地理形状
- 地理形状
- 映射地理形状
- 索引地理形状
- 查询地理形状
- 在查询中使用已索引的形状
- 地理形状的过滤与缓存
- 关系
- 关系
- 应用级别的Join操作
- 扁平化你的数据
- Top hits
- Concurrency
- Concurrency solutions
- 嵌套
- 嵌套对象
- 嵌套映射
- 嵌套查询
- 嵌套排序
- 嵌套集合
- Parent Child
- Parent child
- Indexing parent child
- Has child
- Has parent
- Children agg
- Grandparents
- Practical considerations
- Scaling
- Shard
- Overallocation
- Kagillion shards
- Capacity planning
- Replica shards
- Multiple indices
- Index per timeframe
- Index templates
- Retiring data
- Index per user
- Shared index
- Faking it
- One big user
- Scale is not infinite
- Cluster Admin
- Marvel
- Health
- Node stats
- Other stats
- Deployment
- hardware
- other
- config
- dont touch
- heap
- file descriptors
- conclusion
- cluster settings
- Post Deployment
- dynamic settings
- logging
- indexing perf
- rolling restart
- backup
- restore
- conclusion