[[_scoping_aggregations]]
== Scoping Aggregations
With all of the aggregation examples given so far, you may have noticed that we
omitted a `query` from the search request. ((("queries", "in aggregations")))((("aggregations", "scoping"))) The entire request was
simply an aggregation.
Aggregations can be run at the same time as search requests, but you need to
understand a new concept: _scope_. ((("scoping aggregations", id="ix_scopeaggs", range="startofrange"))) By default, aggregations operate in the same
scope as the query. Put another way, aggregations are calculated on the set of
documents that match your query.
Let's look at one of our first aggregation examples:
[source,js]
--------------------------------------------------
GET /cars/transactions/_search?search_type=count
{
"aggs" : {
"colors" : {
"terms" : {
"field" : "color"
}
}
}
}
--------------------------------------------------
// SENSE: 300_Aggregations/40_scope.json
You can see that the aggregation is in isolation. In reality, Elasticsearch
assumes "no query specified" is equivalent to "query all documents." The preceding
query is internally translated as follows:
[source,js]
--------------------------------------------------
GET /cars/transactions/_search?search_type=count
{
"query" : {
"match_all" : {}
},
"aggs" : {
"colors" : {
"terms" : {
"field" : "color"
}
}
}
}
--------------------------------------------------
// SENSE: 300_Aggregations/40_scope.json
The aggregation always operates in the scope of the query, so an isolated
aggregation really operates in the scope of ((("match_all query", "isolated aggregations in scope of")))a `match_all` query--that is to say,
all documents.
Once armed with the knowledge of scoping, we can start to customize
aggregations even further. All of our previous examples calculated statistics
about _all_ of the data: top-selling cars, average price of all cars, most sales
per month, and so forth.
With scope, we can ask questions such as "How many colors are Ford cars are
available in?" We do this by simply adding a query to the request (in this case
a `match` query):
[source,js]
--------------------------------------------------
GET /cars/transactions/_search <1>
{
"query" : {
"match" : {
"make" : "ford"
}
},
"aggs" : {
"colors" : {
"terms" : {
"field" : "color"
}
}
}
}
--------------------------------------------------
// SENSE: 300_Aggregations/40_scope.json
<1> We are omitting `search_type=count` so((("search_type", "count"))) that search hits are returned too.
By omitting the `search_type=count` this time, we can see both the search
results and the aggregation results:
[source,js]
--------------------------------------------------
{
...
"hits": {
"total": 2,
"max_score": 1.6931472,
"hits": [
{
"_source": {
"price": 25000,
"color": "blue",
"make": "ford",
"sold": "2014-02-12"
}
},
{
"_source": {
"price": 30000,
"color": "green",
"make": "ford",
"sold": "2014-05-18"
}
}
]
},
"aggregations": {
"colors": {
"buckets": [
{
"key": "blue",
"doc_count": 1
},
{
"key": "green",
"doc_count": 1
}
]
}
}
}
--------------------------------------------------
This may seem trivial, but it is the key to advanced and powerful dashboards.
You can transform any static dashboard into a real-time data exploration device
by adding a search bar.((("dashboards", "adding a search bar"))) This allows the user to search for terms and see all
of the graphs (which are powered by aggregations, and thus scoped to the query)
update in real time. Try that with Hadoop!
[float]
=== Global Bucket
You'll often want your aggregation to be scoped to your query. But sometimes
you'll want to search for a subset of data, but aggregate across _all_ of
your data.((("aggregations", "scoping", "global bucket")))((("scoping aggregations", "using a global bucket")))
For example, say you want to know the average price of Ford cars compared to the
average price of _all_ cars. We can use a regular aggregation (scoped to the query)
to get the first piece of information. The second piece of information can be
obtained by using((("buckets", "global")))((("global bucket"))) a `global` bucket.
The +global+ bucket will contain _all_ of your documents, regardless of the query
scope; it bypasses the scope completely. Because it is a bucket, you can nest
aggregations inside it as usual:
[source,js]
--------------------------------------------------
GET /cars/transactions/_search?search_type=count
{
"query" : {
"match" : {
"make" : "ford"
}
},
"aggs" : {
"single_avg_price": {
"avg" : { "field" : "price" } <1>
},
"all": {
"global" : {}, <2>
"aggs" : {
"avg_price": {
"avg" : { "field" : "price" } <3>
}
}
}
}
}
--------------------------------------------------
// SENSE: 300_Aggregations/40_scope.json
<1> This aggregation operates in the query scope (for example, all docs matching +ford+)
<2> The `global` bucket has no parameters.
<3> This aggregation operates on the all documents, regardless of the make.
The +single_avg_price+ metric calculation is based on all documents that fall under the
query scope--all +ford+ cars. The +avg_price+ metric is nested under a
`global` bucket, which means it ignores scoping entirely and calculates on
all the documents. The average returned for that aggregation represents
the average price of all cars.
If you've made it this far in the book, you'll recognize the mantra: use a filter
wherever you can. The same applies to aggregations, and in the next chapter
we show you how to filter an aggregation instead of just limiting the query
scope.((("scoping aggregations", range="endofrange", startref="ix_scopeaggs")))
- Introduction
- 入门
- 是什么
- 安装
- API
- 文档
- 索引
- 搜索
- 聚合
- 小结
- 分布式
- 结语
- 分布式集群
- 空集群
- 集群健康
- 添加索引
- 故障转移
- 横向扩展
- 更多扩展
- 应对故障
- 数据
- 文档
- 索引
- 获取
- 存在
- 更新
- 创建
- 删除
- 版本控制
- 局部更新
- Mget
- 批量
- 结语
- 分布式增删改查
- 路由
- 分片交互
- 新建、索引和删除
- 检索
- 局部更新
- 批量请求
- 批量格式
- 搜索
- 空搜索
- 多索引和多类型
- 分页
- 查询字符串
- 映射和分析
- 数据类型差异
- 确切值对决全文
- 倒排索引
- 分析
- 映射
- 复合类型
- 结构化查询
- 请求体查询
- 结构化查询
- 查询与过滤
- 重要的查询子句
- 过滤查询
- 验证查询
- 结语
- 排序
- 排序
- 字符串排序
- 相关性
- 字段数据
- 分布式搜索
- 查询阶段
- 取回阶段
- 搜索选项
- 扫描和滚屏
- 索引管理
- 创建删除
- 设置
- 配置分析器
- 自定义分析器
- 映射
- 根对象
- 元数据中的source字段
- 元数据中的all字段
- 元数据中的ID字段
- 动态映射
- 自定义动态映射
- 默认映射
- 重建索引
- 别名
- 深入分片
- 使文本可以被搜索
- 动态索引
- 近实时搜索
- 持久化变更
- 合并段
- 结构化搜索
- 查询准确值
- 组合过滤
- 查询多个准确值
- 包含,而不是相等
- 范围
- 处理 Null 值
- 缓存
- 过滤顺序
- 全文搜索
- 匹配查询
- 多词查询
- 组合查询
- 布尔匹配
- 增加子句
- 控制分析
- 关联失效
- 多字段搜索
- 多重查询字符串
- 单一查询字符串
- 最佳字段
- 最佳字段查询调优
- 多重匹配查询
- 最多字段查询
- 跨字段对象查询
- 以字段为中心查询
- 全字段查询
- 跨字段查询
- 精确查询
- 模糊匹配
- Phrase matching
- Slop
- Multi value fields
- Scoring
- Relevance
- Performance
- Shingles
- Partial_Matching
- Postcodes
- Prefix query
- Wildcard Regexp
- Match phrase prefix
- Index time
- Ngram intro
- Search as you type
- Compound words
- Relevance
- Scoring theory
- Practical scoring
- Query time boosting
- Query scoring
- Not quite not
- Ignoring TFIDF
- Function score query
- Popularity
- Boosting filtered subsets
- Random scoring
- Decay functions
- Pluggable similarities
- Conclusion
- Language intro
- Intro
- Using
- Configuring
- Language pitfalls
- One language per doc
- One language per field
- Mixed language fields
- Conclusion
- Identifying words
- Intro
- Standard analyzer
- Standard tokenizer
- ICU plugin
- ICU tokenizer
- Tidying text
- Token normalization
- Intro
- Lowercasing
- Removing diacritics
- Unicode world
- Case folding
- Character folding
- Sorting and collations
- Stemming
- Intro
- Algorithmic stemmers
- Dictionary stemmers
- Hunspell stemmer
- Choosing a stemmer
- Controlling stemming
- Stemming in situ
- Stopwords
- Intro
- Using stopwords
- Stopwords and performance
- Divide and conquer
- Phrase queries
- Common grams
- Relevance
- Synonyms
- Intro
- Using synonyms
- Synonym formats
- Expand contract
- Analysis chain
- Multi word synonyms
- Symbol synonyms
- Fuzzy matching
- Intro
- Fuzziness
- Fuzzy query
- Fuzzy match query
- Scoring fuzziness
- Phonetic matching
- Aggregations
- overview
- circuit breaker fd settings
- filtering
- facets
- docvalues
- eager
- breadth vs depth
- Conclusion
- concepts buckets
- basic example
- add metric
- nested bucket
- extra metrics
- bucket metric list
- histogram
- date histogram
- scope
- filtering
- sorting ordering
- approx intro
- cardinality
- percentiles
- sigterms intro
- sigterms
- fielddata
- analyzed vs not
- 地理坐标点
- 地理坐标点
- 通过地理坐标点过滤
- 地理坐标盒模型过滤器
- 地理距离过滤器
- 缓存地理位置过滤器
- 减少内存占用
- 按距离排序
- Geohashe
- Geohashe
- Geohashe映射
- Geohash单元过滤器
- 地理位置聚合
- 地理位置聚合
- 按距离聚合
- Geohash单元聚合器
- 范围(边界)聚合器
- 地理形状
- 地理形状
- 映射地理形状
- 索引地理形状
- 查询地理形状
- 在查询中使用已索引的形状
- 地理形状的过滤与缓存
- 关系
- 关系
- 应用级别的Join操作
- 扁平化你的数据
- Top hits
- Concurrency
- Concurrency solutions
- 嵌套
- 嵌套对象
- 嵌套映射
- 嵌套查询
- 嵌套排序
- 嵌套集合
- Parent Child
- Parent child
- Indexing parent child
- Has child
- Has parent
- Children agg
- Grandparents
- Practical considerations
- Scaling
- Shard
- Overallocation
- Kagillion shards
- Capacity planning
- Replica shards
- Multiple indices
- Index per timeframe
- Index templates
- Retiring data
- Index per user
- Shared index
- Faking it
- One big user
- Scale is not infinite
- Cluster Admin
- Marvel
- Health
- Node stats
- Other stats
- Deployment
- hardware
- other
- config
- dont touch
- heap
- file descriptors
- conclusion
- cluster settings
- Post Deployment
- dynamic settings
- logging
- indexing perf
- rolling restart
- backup
- restore
- conclusion