## 地理距离过滤器
`地理距离过滤器`(`geo_distance`)以给定位置为圆心画一个圆,来找出那些位置落在其中的文档:
```json
GET /attractions/restaurant/_search
{
"query": {
"filtered": {
"filter": {
"geo_distance": {
"distance": "1km", <1>
"location": { <2>
"lat": 40.715,
"lon": -73.988
}
}
}
}
}
}
```
- <1> 找出所有与指定点距离在1公里(`1km`)内的 `location` 字段。访问 [Distance Units](http://bit.ly/1ynS64j) 查看所支持的距离表示单位
- <2> 中心点可以表示为字符串,数组或者(如示例中的)对象。详见 [lat-lon-formats](/lat-lon-formats)。
地理距离过滤器计算代价昂贵。
为了优化性能,Elasticsearch 先画一个矩形框(边长为2倍距离)来围住整个圆形,
这样就可以用消耗较少的盒模型计算方式来排除掉那些不在盒子内(自然也不在圆形内)的文档,
然后只对落在盒模型内的这部分点用地理坐标计算方式处理。
> 提示
> 你需要判断你的使用场景,是否需要如此精确的使用圆模型来做距离过滤?
> 通常使用矩形模型是更高效的方式,并且往往也能满足应用需求。
### 更快的地理距离计算
两点间的距离计算,有多种性能换精度的算法:
- `arc`::
最慢但是最精确是`弧形`(`arc`)计算方式,这种方式把世界当作是球体来处理。
不过这种方式精度还是有限,因为这个世界并不是完全的球体。
- `plane`::
`平面`(`plane`)计算方式,((("plane distance calculation")))把地球当成是平坦的。
这种方式快一些但是精度略逊;在赤道附近位置精度最好,而靠近两极则变差。
- `sloppy_arc`::
如此命名,是因为它使用了 Lucene 的 `SloppyMath` 类。
这是一种用精度换取速度的计算方式,它使用 [Haversine formula](http://en.wikipedia.org/wiki/Haversine_formula) 来计算距离;
它比`弧形`(`arc`)计算方式快4~5倍, 并且距离精度达99.9%。这也是默认的计算方式。
你可以参考下例来指定不同的计算方式:
```json
GET /attractions/restaurant/_search
{
"query": {
"filtered": {
"filter": {
"geo_distance": {
"distance": "1km",
"distance_type": "plane", <1>
"location": {
"lat": 40.715,
"lon": -73.988
}
}
}
}
}
}
```
- <1> 使用更快但精度稍差的`平面`(`plane`)计算方式。
> 提示:
> 你的用户真的会在意一个宾馆落在指定圆形区域数米之外了吗?
> 一些地理位置相关的应用会有较高的精度要求;但大部分实际应用场景中,使用精度较低但响应更快的计算方式可能就挺好。
### 地理距离区间过滤器
`地理距离过滤器`(`geo_distance`)和`地理距离区间过滤器`(`geo_distance_range`)的唯一差别在于后者是一个环状的,它会排除掉落在内圈中的那部分文档。
指定到中心点的距离也可以换一种表示方式:
指定一个最小距离(使用 `gt`或者`gte`)和最大距离(使用`lt`或者`lte`),就像使用`区间`(`range`)过滤器一样。
```json
GET /attractions/restaurant/_search
{
"query": {
"filtered": {
"filter": {
"geo_distance_range": {
"gte": "1km", <1>
"lt": "2km", <1>
"location": {
"lat": 40.715,
"lon": -73.988
}
}
}
}
}
}
```
- <1> 匹配那些距离中心点超过`1公里`而小于`2公里`的位置。
- Introduction
- 入门
- 是什么
- 安装
- API
- 文档
- 索引
- 搜索
- 聚合
- 小结
- 分布式
- 结语
- 分布式集群
- 空集群
- 集群健康
- 添加索引
- 故障转移
- 横向扩展
- 更多扩展
- 应对故障
- 数据
- 文档
- 索引
- 获取
- 存在
- 更新
- 创建
- 删除
- 版本控制
- 局部更新
- Mget
- 批量
- 结语
- 分布式增删改查
- 路由
- 分片交互
- 新建、索引和删除
- 检索
- 局部更新
- 批量请求
- 批量格式
- 搜索
- 空搜索
- 多索引和多类型
- 分页
- 查询字符串
- 映射和分析
- 数据类型差异
- 确切值对决全文
- 倒排索引
- 分析
- 映射
- 复合类型
- 结构化查询
- 请求体查询
- 结构化查询
- 查询与过滤
- 重要的查询子句
- 过滤查询
- 验证查询
- 结语
- 排序
- 排序
- 字符串排序
- 相关性
- 字段数据
- 分布式搜索
- 查询阶段
- 取回阶段
- 搜索选项
- 扫描和滚屏
- 索引管理
- 创建删除
- 设置
- 配置分析器
- 自定义分析器
- 映射
- 根对象
- 元数据中的source字段
- 元数据中的all字段
- 元数据中的ID字段
- 动态映射
- 自定义动态映射
- 默认映射
- 重建索引
- 别名
- 深入分片
- 使文本可以被搜索
- 动态索引
- 近实时搜索
- 持久化变更
- 合并段
- 结构化搜索
- 查询准确值
- 组合过滤
- 查询多个准确值
- 包含,而不是相等
- 范围
- 处理 Null 值
- 缓存
- 过滤顺序
- 全文搜索
- 匹配查询
- 多词查询
- 组合查询
- 布尔匹配
- 增加子句
- 控制分析
- 关联失效
- 多字段搜索
- 多重查询字符串
- 单一查询字符串
- 最佳字段
- 最佳字段查询调优
- 多重匹配查询
- 最多字段查询
- 跨字段对象查询
- 以字段为中心查询
- 全字段查询
- 跨字段查询
- 精确查询
- 模糊匹配
- Phrase matching
- Slop
- Multi value fields
- Scoring
- Relevance
- Performance
- Shingles
- Partial_Matching
- Postcodes
- Prefix query
- Wildcard Regexp
- Match phrase prefix
- Index time
- Ngram intro
- Search as you type
- Compound words
- Relevance
- Scoring theory
- Practical scoring
- Query time boosting
- Query scoring
- Not quite not
- Ignoring TFIDF
- Function score query
- Popularity
- Boosting filtered subsets
- Random scoring
- Decay functions
- Pluggable similarities
- Conclusion
- Language intro
- Intro
- Using
- Configuring
- Language pitfalls
- One language per doc
- One language per field
- Mixed language fields
- Conclusion
- Identifying words
- Intro
- Standard analyzer
- Standard tokenizer
- ICU plugin
- ICU tokenizer
- Tidying text
- Token normalization
- Intro
- Lowercasing
- Removing diacritics
- Unicode world
- Case folding
- Character folding
- Sorting and collations
- Stemming
- Intro
- Algorithmic stemmers
- Dictionary stemmers
- Hunspell stemmer
- Choosing a stemmer
- Controlling stemming
- Stemming in situ
- Stopwords
- Intro
- Using stopwords
- Stopwords and performance
- Divide and conquer
- Phrase queries
- Common grams
- Relevance
- Synonyms
- Intro
- Using synonyms
- Synonym formats
- Expand contract
- Analysis chain
- Multi word synonyms
- Symbol synonyms
- Fuzzy matching
- Intro
- Fuzziness
- Fuzzy query
- Fuzzy match query
- Scoring fuzziness
- Phonetic matching
- Aggregations
- overview
- circuit breaker fd settings
- filtering
- facets
- docvalues
- eager
- breadth vs depth
- Conclusion
- concepts buckets
- basic example
- add metric
- nested bucket
- extra metrics
- bucket metric list
- histogram
- date histogram
- scope
- filtering
- sorting ordering
- approx intro
- cardinality
- percentiles
- sigterms intro
- sigterms
- fielddata
- analyzed vs not
- 地理坐标点
- 地理坐标点
- 通过地理坐标点过滤
- 地理坐标盒模型过滤器
- 地理距离过滤器
- 缓存地理位置过滤器
- 减少内存占用
- 按距离排序
- Geohashe
- Geohashe
- Geohashe映射
- Geohash单元过滤器
- 地理位置聚合
- 地理位置聚合
- 按距离聚合
- Geohash单元聚合器
- 范围(边界)聚合器
- 地理形状
- 地理形状
- 映射地理形状
- 索引地理形状
- 查询地理形状
- 在查询中使用已索引的形状
- 地理形状的过滤与缓存
- 关系
- 关系
- 应用级别的Join操作
- 扁平化你的数据
- Top hits
- Concurrency
- Concurrency solutions
- 嵌套
- 嵌套对象
- 嵌套映射
- 嵌套查询
- 嵌套排序
- 嵌套集合
- Parent Child
- Parent child
- Indexing parent child
- Has child
- Has parent
- Children agg
- Grandparents
- Practical considerations
- Scaling
- Shard
- Overallocation
- Kagillion shards
- Capacity planning
- Replica shards
- Multiple indices
- Index per timeframe
- Index templates
- Retiring data
- Index per user
- Shared index
- Faking it
- One big user
- Scale is not infinite
- Cluster Admin
- Marvel
- Health
- Node stats
- Other stats
- Deployment
- hardware
- other
- config
- dont touch
- heap
- file descriptors
- conclusion
- cluster settings
- Post Deployment
- dynamic settings
- logging
- indexing perf
- rolling restart
- backup
- restore
- conclusion