## 应用级别的Join操作
我们可以在应用这一层面(部分的)模仿实现关系数据库中的join操作。例如,我们要给 `users` 以及每个 `user` 所对应的若干篇 `blog` 建立索引。在这充满关系的世界中,我们可以做一些类似于这样的事情:
```
PUT /my_index/user/1 (1)
{
"name": "John Smith",
"email": "john@smith.com",
"dob": "1970/10/24"
}
PUT /my_index/blogpost/2 (1)
{
"title": "Relationships",
"body": "It's complicated...",
"user": 1 (2)
}
```
(1) 每一个 document 中 `index`,`type`,和 `id` 共同组成了主键。
(2) `blogpost` 通过包含 `user` 的 `id` 来关联 `user`,而这里不需要指定 `user` 的 `index` 和 `type` 是因为在我们的应用中它们是被硬编码的(这里的硬编码的意思应该是说,在 `blogpost` document中引用了 `user` ,那么es就会在相同的index下查找 `user` type,并且id为1的document,所以不需要指定 `index` 和 `type`)。
通过查询 `user` 的ID为1将很容易找到相应的 `blog`:
```
GET /my_index/blogpost/_search
{
"query": {
"filtered": {
"filter": {
"term": { "user": 1 }
}
}
}
}
```
想通过博客作者的名字 `John` 来找到相关的博客,我们需要执行2个查询语句:
第一,我们需要先找到所有叫 `John` 的博客作者,从而获得它们的 ID列表,
第二,将获取到的ID列表作为查询条件来执行类似于上面的查询语句:
```
GET /my_index/user/_search
{
"query": {
"match": {
"name": "John"
}
}
}
GET /my_index/blogpost/_search
{
"query": {
"filtered": {
"filter": {
"terms": { "user": [1] } (1)
}
}
}
}
```
(1) 其中 `terms` 的值被设置成从第一个查询中得到的ID列表。
在应用级别模仿join操作的最大好处是数据是立体的(normalized),如果想改变 `user` 的姓名,那么只要在 `user` 这个 document 上改就可以了。而缺点是你必须在查询期间运行额外的 query 来实现 join 的操作。
在这个例子当中,只有一个 `user` 符合我们的第一个查询条件,但在真实的世界中,很可能会出现数百万人的名字叫 `John`,将这么多的ID塞到第二个查询中,将会让这个查询语句变得非常庞大,并且这个查询会执行数百万次 `term` 的查找。
这种模仿join操作的方法适合于前置查询结果集(在该例子中指代 `user`)比较小,并且最好是不经常变化的,此时我们在应用中可以去缓存这部分数据,避免频繁的执行第一个查询。
- Introduction
- 入门
- 是什么
- 安装
- API
- 文档
- 索引
- 搜索
- 聚合
- 小结
- 分布式
- 结语
- 分布式集群
- 空集群
- 集群健康
- 添加索引
- 故障转移
- 横向扩展
- 更多扩展
- 应对故障
- 数据
- 文档
- 索引
- 获取
- 存在
- 更新
- 创建
- 删除
- 版本控制
- 局部更新
- Mget
- 批量
- 结语
- 分布式增删改查
- 路由
- 分片交互
- 新建、索引和删除
- 检索
- 局部更新
- 批量请求
- 批量格式
- 搜索
- 空搜索
- 多索引和多类型
- 分页
- 查询字符串
- 映射和分析
- 数据类型差异
- 确切值对决全文
- 倒排索引
- 分析
- 映射
- 复合类型
- 结构化查询
- 请求体查询
- 结构化查询
- 查询与过滤
- 重要的查询子句
- 过滤查询
- 验证查询
- 结语
- 排序
- 排序
- 字符串排序
- 相关性
- 字段数据
- 分布式搜索
- 查询阶段
- 取回阶段
- 搜索选项
- 扫描和滚屏
- 索引管理
- 创建删除
- 设置
- 配置分析器
- 自定义分析器
- 映射
- 根对象
- 元数据中的source字段
- 元数据中的all字段
- 元数据中的ID字段
- 动态映射
- 自定义动态映射
- 默认映射
- 重建索引
- 别名
- 深入分片
- 使文本可以被搜索
- 动态索引
- 近实时搜索
- 持久化变更
- 合并段
- 结构化搜索
- 查询准确值
- 组合过滤
- 查询多个准确值
- 包含,而不是相等
- 范围
- 处理 Null 值
- 缓存
- 过滤顺序
- 全文搜索
- 匹配查询
- 多词查询
- 组合查询
- 布尔匹配
- 增加子句
- 控制分析
- 关联失效
- 多字段搜索
- 多重查询字符串
- 单一查询字符串
- 最佳字段
- 最佳字段查询调优
- 多重匹配查询
- 最多字段查询
- 跨字段对象查询
- 以字段为中心查询
- 全字段查询
- 跨字段查询
- 精确查询
- 模糊匹配
- Phrase matching
- Slop
- Multi value fields
- Scoring
- Relevance
- Performance
- Shingles
- Partial_Matching
- Postcodes
- Prefix query
- Wildcard Regexp
- Match phrase prefix
- Index time
- Ngram intro
- Search as you type
- Compound words
- Relevance
- Scoring theory
- Practical scoring
- Query time boosting
- Query scoring
- Not quite not
- Ignoring TFIDF
- Function score query
- Popularity
- Boosting filtered subsets
- Random scoring
- Decay functions
- Pluggable similarities
- Conclusion
- Language intro
- Intro
- Using
- Configuring
- Language pitfalls
- One language per doc
- One language per field
- Mixed language fields
- Conclusion
- Identifying words
- Intro
- Standard analyzer
- Standard tokenizer
- ICU plugin
- ICU tokenizer
- Tidying text
- Token normalization
- Intro
- Lowercasing
- Removing diacritics
- Unicode world
- Case folding
- Character folding
- Sorting and collations
- Stemming
- Intro
- Algorithmic stemmers
- Dictionary stemmers
- Hunspell stemmer
- Choosing a stemmer
- Controlling stemming
- Stemming in situ
- Stopwords
- Intro
- Using stopwords
- Stopwords and performance
- Divide and conquer
- Phrase queries
- Common grams
- Relevance
- Synonyms
- Intro
- Using synonyms
- Synonym formats
- Expand contract
- Analysis chain
- Multi word synonyms
- Symbol synonyms
- Fuzzy matching
- Intro
- Fuzziness
- Fuzzy query
- Fuzzy match query
- Scoring fuzziness
- Phonetic matching
- Aggregations
- overview
- circuit breaker fd settings
- filtering
- facets
- docvalues
- eager
- breadth vs depth
- Conclusion
- concepts buckets
- basic example
- add metric
- nested bucket
- extra metrics
- bucket metric list
- histogram
- date histogram
- scope
- filtering
- sorting ordering
- approx intro
- cardinality
- percentiles
- sigterms intro
- sigterms
- fielddata
- analyzed vs not
- 地理坐标点
- 地理坐标点
- 通过地理坐标点过滤
- 地理坐标盒模型过滤器
- 地理距离过滤器
- 缓存地理位置过滤器
- 减少内存占用
- 按距离排序
- Geohashe
- Geohashe
- Geohashe映射
- Geohash单元过滤器
- 地理位置聚合
- 地理位置聚合
- 按距离聚合
- Geohash单元聚合器
- 范围(边界)聚合器
- 地理形状
- 地理形状
- 映射地理形状
- 索引地理形状
- 查询地理形状
- 在查询中使用已索引的形状
- 地理形状的过滤与缓存
- 关系
- 关系
- 应用级别的Join操作
- 扁平化你的数据
- Top hits
- Concurrency
- Concurrency solutions
- 嵌套
- 嵌套对象
- 嵌套映射
- 嵌套查询
- 嵌套排序
- 嵌套集合
- Parent Child
- Parent child
- Indexing parent child
- Has child
- Has parent
- Children agg
- Grandparents
- Practical considerations
- Scaling
- Shard
- Overallocation
- Kagillion shards
- Capacity planning
- Replica shards
- Multiple indices
- Index per timeframe
- Index templates
- Retiring data
- Index per user
- Shared index
- Faking it
- One big user
- Scale is not infinite
- Cluster Admin
- Marvel
- Health
- Node stats
- Other stats
- Deployment
- hardware
- other
- config
- dont touch
- heap
- file descriptors
- conclusion
- cluster settings
- Post Deployment
- dynamic settings
- logging
- indexing perf
- rolling restart
- backup
- restore
- conclusion