# Sort
允许在特定字段上添加一个或多个排序。 每个排序也可以颠倒。 排序是在每个字段级别上定义的,具有`_score`的特殊字段名称按分数排序,`_doc`按索引顺序排序。
假设以下索引映射:
```
PUT /my_index
{
"mappings": {
"my_type": {
"properties": {
"post_date": { "type": "date" },
"user": {
"type": "keyword"
},
"name": {
"type": "keyword"
},
"age": { "type": "integer" }
}
}
}
}
```
```
GET /my_index/my_type/_search
{
"sort" : [
{ "post_date" : {"order" : "asc"}},
"user",
{ "name" : "desc" },
{ "age" : "desc" },
"_score"
],
"query" : {
"term" : { "user" : "kimchy" }
}
}
```
> 注意:
>
> `_doc`除了能最有效率的排列顺序、没有真正的使用场景。所以如果你不关心文档返回的顺序,那么你应该按`_doc`排序。 这特别有助于[滚动](Scroll.md)。
## 排序值
返回的每个文档的排序值也作为响应的一部分返回。
## 排列顺序
排序选项可以有以下值:
选项描述`asc`升序`desc`降序在对`_score`进行排序时,该顺序默认为`desc`,在对其他事物进行排序时默认为`asc`。
## 排列模式选项
Elasticsearch支持按数组或多值字段排序。`mode`选项控制选择用于对其所属文档进行排序的数组值。 `mode`选项可以具有以下值:
选项描述`min`选择最低值。`max`选择最高值。`sum`使用所有值的和作为排序值。 仅适用于基于数字的数组字段。`avg`使用所有值的平均值作为排序值。 仅适用于基于数字的数组字段。`median`使用所有值的中值作为排序值。 仅适用于基于数字的数组字段。### 排序模式用法示例
在下面的示例中,每个文档字段价格有多个价格。 在这种情况下,结果匹配将按基于每个文档的平均价格的升序排序。
```
PUT /my_index/my_type/1?refresh
{
"product": "chocolate",
"price": [20, 4]
}
POST /_search
{
"query" : {
"term" : { "product" : "chocolate" }
},
"sort" : [
{"price" : {"order" : "asc", "mode" : "avg"}}
]
}
```
## 使用内嵌对象排序
Elasticsearch 还支持根据一个或多个嵌套对象内的字段进行排序。 通过嵌套字段支持进行的排序在已经存在的排序选项之上具有以下参数:
`nested_path`
```
定义要排序的嵌套对象。 实际排序字段必须是此嵌套对象内的直接字段。 当通过嵌套字段排序时,此字段是必需的。
```
`nested_filter`
```
嵌套路径中的内部对象应与其匹配的过滤器,以便通过排序考虑其字段值。 常见的情况是在嵌套的过滤器或查询中重复查询/过滤。 默认情况下,没有 nested_filter 是激活的。
```
### 内嵌对象排序示例
在下面的示例中,`offer`是一个类型为嵌套的字段。 需要指定`nested_path`; 否则,elasticsearch不知道需要捕获哪个嵌套级排序值。
```
POST /_search
{
"query" : {
"term" : { "product" : "chocolate" }
},
"sort" : [
{
"offer.price" : {
"mode" : "avg",
"order" : "asc",
"nested_path" : "offer",
"nested_filter" : {
"term" : { "offer.color" : "blue" }
}
}
}
]
}
```
内嵌对象排序同样也支持脚本排序和按地理距离排序。
## 缺失值
`missing`参数指定如何处理缺少此字段的文档:`missing`的值可以设置为`_last`,`_first`或自定义值(将用于缺失字段的文档的排序值)。
例如:
```
GET /_search
{
"sort" : [
{ "price" : {"missing" : "_last"} }
],
"query" : {
"term" : { "product" : "chocolate" }
}
}
```
> 注意
>
> 如果嵌套的内部对象与`nested_filter`不匹配,则使用缺少的值。
## 忽略没有映射的字段
默认地,如果没有与字段关联的映射,搜索请求将失败。 `unmapped_type`选项允许忽略没有映射且没有由它们排序的字段。 此参数的值用于确定要发出的排序值。下面是一个如何使用它的例子:
```
GET /_search
{
"sort" : [
{ "price" : {"unmapped_type" : "long"} }
],
"query" : {
"term" : { "product" : "chocolate" }
}
}
```
如果查询的任何索引没有`price`的映射,那么Elasticsearch将处理它,就好像存在类型为`long`的映射,其中该索引中的所有文档都没有该字段的值。
## GEO距离排序
允许按`_geo_distance`排序。 下面是一个例子,假设`pin.location`是一个类型为`geo_point`的字段:
```
GET /_search
{
"sort" : [
{
"_geo_distance" : {
"pin.location" : [-70, 40],
"order" : "asc",
"unit" : "km",
"mode" : "min",
"distance_type" : "arc"
}
}
],
"query" : {
"term" : { "user" : "kimchy" }
}
}
```
`distance_type`
```
如何计算距离。 如何计算距离。可以是弧(默认)或平面(更快,但长距离不准确,靠近极点)。
```
`mode`
```
如果字段有多个地理点,该怎么办。 默认情况下,按升序排序时考虑最短距离,按降序排序时最长距离。 支持的值为 min,max,median 和 avg。
```
`unit`
```
计算排序值时使用的单位。 默认值为 m(米)。
```
> 注意
>
> `geo distance sorting`不支持可配置的缺失值:当文档没有用于距离计算的字段的值时,距离将始终被视为等于`Infinity`。
在提供坐标时支持以下格式:
### 属性格式的经纬度
```
GET /_search
{
"sort" : [
{
"_geo_distance" : {
"pin.location" : {
"lat" : 40,
"lon" : -70
},
"order" : "asc",
"unit" : "km"
}
}
],
"query" : {
"term" : { "user" : "kimchy" }
}
}
```
### 字符串格式的经纬度
在`lat`,`lon`中的格式。
```
GET /_search
{
"sort" : [
{
"_geo_distance" : {
"pin.location" : "40,-70",
"order" : "asc",
"unit" : "km"
}
}
],
"query" : {
"term" : { "user" : "kimchy" }
}
}
```
### GeoHash
```
GET /_search
{
"sort" : [
{
"_geo_distance" : {
"pin.location" : "drm3btev3e86",
"order" : "asc",
"unit" : "km"
}
}
],
"query" : {
"term" : { "user" : "kimchy" }
}
}
```
### 经纬度数组
格式是`[lon,lat]`,注意,`lon/lat`的顺序在这里为了符合[GeoJSON](http://geojson.org/)。
```
GET /_search
{
"sort" : [
{
"_geo_distance" : {
"pin.location" : [-70, 40],
"order" : "asc",
"unit" : "km"
}
}
],
"query" : {
"term" : { "user" : "kimchy" }
}
}
```
## 多个引用点
多个地理点可以作为一个包含任何 geo\_point 格式的数组传递,例如,
```
GET /_search
{
"sort" : [
{
"_geo_distance" : {
"pin.location" : [[-70, 40], [-71, 42]],
"order" : "asc",
"unit" : "km"
}
}
],
"query" : {
"term" : { "user" : "kimchy" }
}
}
```
等等。
文档的最终距离将是包含在文档中的所有点的最小/最大/平均(通过模式定义)到在排序请求中给出的所有点的距离。
## 基于脚本排序
允许基于自定义脚本排序,这里是一个例子:
```
GET /_search
{
"query" : {
"term" : { "user" : "kimchy" }
},
"sort" : {
"_script" : {
"type" : "number",
"script" : {
"lang": "painless",
"inline": "doc['field_name'].value * params.factor",
"params" : {
"factor" : 1.1
}
},
"order" : "asc"
}
}
}
```
## 追踪分数
在字段上排序时,不会计算分数。 通过将`track_scores`设置为`true`,仍将计算和跟踪分数。
```
GET /_search
{
"track_scores": true,
"sort" : [
{ "post_date" : {"order" : "desc"} },
{ "name" : "desc" },
{ "age" : "desc" }
],
"query" : {
"term" : { "user" : "kimchy" }
}
}
```
## 内存注意事项
排序时,相关的排序字段值将加载到内存中。这意味着每个分片应该有足够的内存来容纳它们。对于基于字符串的类型,排序的字段不应该被`analyzed`或`tokenized`。对于数字类型,如果可能,建议将类型显式设置为较窄类型(如`short`,`integer`和`float`)。
- 入门
- 基本概念
- 安装
- 探索你的集群
- 集群健康
- 列出所有索引库
- 创建一个索引库
- 索引文档创建与查询
- 删除一个索引库
- 修改你的数据
- 更新文档
- 删除文档
- 批量处理
- 探索你的数据
- 搜索API
- 查询语言介绍
- 执行搜索
- 执行过滤
- 执行聚合
- 总结
- Elasticsearch设置
- 安装Elasticsearch
- .zip或.tar.gz文件的安装方式
- Install Elasticsearch with .zip on Windows
- Debian软件包安装方式
- RPM安装方式
- Install Elasticsearch with Windows MSI Installer
- Docker安装方式
- 配置Elasticsearch
- 安全配置
- 日志配置
- 重要的Elasticsearch配置
- 重要的系统配置
- 系统设置
- 在jvm.options中设置JVM堆大小
- 禁用swapping
- 文件描述符
- 虚拟内存
- 线程数
- DNS cache settings
- 启动前检查
- 堆大小检查
- 文件描述符检查
- 内存锁定检查
- 最大线程数检查
- 最大虚拟内存检查
- Max file size check
- 最大map数检查
- JVM Client模式检查
- 串行收集使用检查
- 系统调用过滤检查
- OnError与OnOutOfMemoryError检查
- Early-access check
- G1GC检查
- Elasticsearch停机
- Elasticsearch升级
- 滚动升级
- 全集群重启升级
- 索引重建升级
- Set up X-Pack
- Installing X-Pack
- X-Pack Settings
- Watcher Settings
- Configuring Security
- Breaking changes in 6.0
- X-Pack Breaking Changes
- 重大变化
- 6.0的重大变化
- 聚合变化
- Cat API变化
- 客户端变化
- 集群变化
- 文档API变化
- 索引变化
- 预处理变化
- 映射变化
- Packaging变化
- Percolator变化
- 插件变化
- 索引重建变化
- 信息统计变化
- DSL查询变化
- 设置变化
- 脚本变化
- API约定
- 多索引语法
- 索引库名称的日期运算
- 常用选项
- URL-based访问控制
- 文档APIs
- 读写文档
- 索引接口
- Get接口
- Delete API
- Delete By Query API
- Update API
- Update By Query API
- Multi Get API
- Bulk API
- Reindex API
- Term Vectors
- Multi termvectors API
- ?refresh
- 搜索APIs
- Search
- URI Search
- Request Body Search
- Query
- From / Size
- Sort
- Source filtering
- Fields
- Script Fields
- Doc value Fields
- Post filter
- Highlighting
- Rescoring
- Search Type
- Scroll
- Preference
- Explain
- Version
- Index Boost
- min_score
- Named Queries
- Inner hits
- Field Collapsing
- Search After
- Search Template
- Multi Search Template
- Search Shards API
- Suggesters
- Term suggester
- Phrase Suggester
- Completion Suggester
- Context Suggester
- Returning the type of the suggester
- Multi Search API
- Count API
- Validate API
- Explain API
- Profile API
- Profiling Queries
- Profiling Aggregations
- Profiling Considerations
- Field Capabilities API
- Aggregations
- Metrics Aggregations
- 平均值聚合
- 值计数聚合(Value Count Aggregation)
- Cardinality Aggregation
- Extended Stats Aggregation
- 地理边界聚合
- 地理重心聚合
- Max Aggregation
- Min Aggregation
- Percentiles Aggregation
- Percentile Ranks Aggregation
- Scripted Metric Aggregation
- Stats Aggregation
- Sum Aggregation
- Top hits Aggregation
- Value Count Aggregation
- Bucket Aggregations
- 邻接矩阵聚合
- Children Aggregation
- Date Histogram Aggregation
- Date Range Aggregation
- Significant Terms Aggregation
- Filter Aggregation(过滤器聚合)
- Filters Aggregation
- Geo Distance Aggregation(地理距离聚合) 转至元数据结尾
- GeoHash grid Aggregation(GeoHash网格聚合)
- Global Aggregation(全局聚合) 转至元数据结尾
- Histogram Aggregation
- IP Range Aggregation(IP范围聚合)
- Missing Aggregation
- Nested Aggregation(嵌套聚合)
- Range Aggregation(范围聚合)
- Reverse nested Aggregation
- Sampler Aggregation
- Significant Terms Aggregation
- Significant Text Aggregation
- Terms Aggregation
- Pipeline Aggregations
- Avg Bucket Aggregation
- Derivative Aggregation(导数聚合)
- Max Bucket Aggregation
- Min Bucket Aggregation
- Sum Bucket Aggregation
- Stats Bucket Aggregation
- Extended Stats Bucket Aggregation(扩展信息桶聚合)
- Percentiles Bucket Aggregation(百分数桶聚合)
- Moving Average Aggregation
- Cumulative Sum Aggregation(累积汇总聚合)
- Bucket Script Aggregation(桶脚本聚合)
- Bucket Selector Aggregation(桶选择器聚合)
- Serial Differencing Aggregation(串行差异聚合)
- Matrix Aggregations
- Matrix Stats
- Caching heavy aggregations
- Returning only aggregation results
- Aggregation Metadata
- Returning the type of the aggregation
- Indices APIs
- Create Index /创建索引
- Delete Index /删除索引
- Get Index /获取索引
- Indices Exists /索引存在
- Open / Close Index API /启动关闭索引
- Shrink Index /缩小索引
- Rollover Index/滚动索引
- Put Mapping /提交映射
- Get Mapping /获取映射
- Get Field Mapping /获取字段映射
- Types Exists
- Index Aliases
- Update Indices Settings
- Get Settings
- Analyze
- Explain Analyze
- Index Templates
- 索引统计信息
- 索引段
- 索引恢复
- 索引分片存储
- 清理缓存
- 刷新
- 同步刷新
- 重新加载
- 强制合并
- Cat APIs
- cat aliases
- cat allocation
- cat count
- cat fielddata
- cat health
- cat indices
- cat master
- cat nodeattrs
- cat nodes
- cat pending tasks
- cat plugins
- cat recovery
- cat repositories
- cat segments
- cat shards
- cat thread pool
- cat snapshots
- cat templates
- Cluster APIs
- 集群健康
- 集群状态
- 集群统计
- 挂起的集群任务
- 集群重新路由
- Cluster Update Settings
- Nodes Stats
- Nodes Info
- Nodes Feature Usage
- Remote Cluster Info
- Task Management API
- Nodes hot_threads
- Cluster Allocation Explain API
- Query DSL
- 查询context与过滤context
- Match All Query
- 全文搜索
- 匹配查询
- 短语匹配查询
- 短语前缀匹配查询
- 多字段查询
- 常用术语查询
- 查询语句查询
- 简单查询语句
- Term level queries
- Term Query
- Terms Query
- Range Query
- Exists Query
- Prefix Query
- Wildcard Query
- Regexp Query
- Fuzzy Query
- Type Query
- Ids Query
- 复合查询
- Constant Score 查询
- Bool 查询
- Dis Max 查询
- Function Score 查询
- Boosting 查询
- Joining queries
- Has Child Query
- Has Parent Query
- Nested Query(嵌套查询)
- Parent Id Query
- Geo queries
- GeoShape Query(地理形状查询)
- Geo Bounding Box Query(地理边框查询)
- Geo Distance Query(地理距离查询)
- Geo Polygon Query(地理多边形查询)
- Specialized queries
- More Like This Query
- Script Query
- Percolate Query
- Span queries
- Span Term 查询
- Span Multi Term 查询
- Span First 查询
- Span Near 查询
- Span Or 查询
- Span Not 查询
- Span Containing 查询
- Span Within 查询
- Span Field Masking 查询 转至元数据结尾
- Minimum Should Match
- Multi Term Query Rewrite
- Mapping
- Removal of mapping types
- Field datatypes
- Array
- Binary
- Range
- Boolean
- Date
- Geo-point datatype
- Geo-Shape datatype
- IP datatype
- Keyword datatype
- Nested datatype
- Numeric datatypes
- Object datatype
- Text
- Token数
- 渗滤型
- join datatype
- Meta-Fields
- _all field
- _field_names field
- _id field
- _index field
- _meta field
- _routing field
- _source field
- _type field
- _uid field
- Mapping parameters
- analyzer(分析器)
- normalizer(归一化)
- boost(提升)
- Coerce(强制类型转换)
- copy_to(合并参数)
- doc_values(文档值)
- dynamic(动态设置)
- enabled(开启字段)
- eager_global_ordinals
- fielddata(字段数据)
- format (日期格式)
- ignore_above(忽略超越限制的字段)
- ignore_malformed(忽略格式不对的数据)
- index (索引)
- index_options(索引设置)
- fields(字段)
- Norms (标准信息)
- null_value(空值)
- position_increment_gap(短语位置间隙)
- properties (属性)
- search_analyzer (搜索分析器)
- similarity (匹配方法)
- store(存储)
- Term_vectors(词根信息)
- Dynamic Mapping
- Dynamic field mapping(动态字段映射)
- Dynamic templates(动态模板)
- default mapping(mapping中的_default_)
- Analysis
- Anatomy of an analyzer(分析器的分析)
- Testing analyzers(测试分析器)
- Analyzers(分析器)
- Configuring built-in analyzers(配置内置分析器)
- Standard Analyzer(标准分析器)
- Simple Analyzer(简单分析器)
- 空白分析器
- Stop Analyzer
- Keyword Analyzer
- 模式分析器
- 语言分析器
- 指纹分析器
- 自定义分析器
- Normalizers
- Tokenizers(分词器)
- Standard Tokenizer(标准分词器)
- Letter Tokenizer
- Lowercase Tokenizer (小写分词器)
- Whitespace Analyzer
- UAX URL Email Tokenizer
- Classic Tokenizer
- Thai Tokenizer(泰语分词器)
- NGram Tokenizer
- Edge NGram Tokenizer
- Keyword Analyzer
- Pattern Tokenizer
- Simple Pattern Tokenizer
- Simple Pattern Split Tokenizer
- Path Hierarchy Tokenizer(路径层次分词器)
- Token Filters(词元过滤器)
- Standard Token Filter
- ASCII Folding Token Filter
- Flatten Graph Token Filter
- Length Token Filter
- Lowercase Token Filter
- Uppercase Token Filter
- NGram Token Filter
- Edge NGram Token Filter
- Porter Stem Token Filter
- Shingle Token Filter
- Stop Token Filter
- Word Delimiter Token Filter
- Word Delimiter Graph Token Filter
- Stemmer Token Filter
- Stemmer Override Token Filter
- Keyword Marker Token Filter
- Keyword Repeat Token Filter
- KStem Token Filter
- Snowball Token Filter
- Phonetic Token Filter
- Synonym Token Filter
- Synonym Graph Token Filter
- Compound Word Token Filters
- Reverse Token Filter
- Elision Token Filter
- Truncate Token Filter
- Unique Token Filter
- Pattern Capture Token Filter
- Pattern Replace Token Filter
- Trim Token Filter
- Limit Token Count Token Filter
- Hunspell Token Filter
- Common Grams Token Filter
- Normalization Token Filter
- CJK Width Token Filter
- CJK Bigram Token Filter
- Delimited Payload Token Filter
- Keep Words Token Filter
- Keep Types Token Filter
- Classic Token Filter
- Apostrophe Token Filter
- Decimal Digit Token Filter
- Fingerprint Token Filter
- Minhash Token Filter
- Character Filters(字符过滤器)
- HTML Strip Character Filter
- Mapping Character Filter
- Pattern Replace Character Filter
- 模块
- Cluster
- 集群级路由和碎片分配
- 基于磁盘的分片分配
- 分片分配awareness
- 分片分配过滤
- Miscellaneous cluster settings
- Scripting
- Painless Scripting Language
- Lucene Expressions Language
- Advanced scripts using script engines
- Snapshot And Restore
- Thread Pool
- Index Modules(索引模块)
- 预处理节点
- Pipeline Definition
- Ingest APIs
- Put Pipeline API
- Get Pipeline API
- Delete Pipeline API
- Simulate Pipeline API
- Accessing Data in Pipelines
- Handling Failures in Pipelines
- Processors
- Monitoring Elasticsearch
- X-Pack APIs
- X-Pack Commands
- How To
- Testing(测试)
- Glossary of terms
- Release Notes
- X-Pack Release Notes