## 常用术语查询
常用术语查询是停用词的现代替代,其提高了搜索结果的精度和回忆(通过考虑停用词)且不牺牲性能
### 问题:
查询中的每个词都有成本。 搜索“棕色狐狸”需要三个词查询,一个针对“the”,“brown”和“fox”中的每一个,所有这些查询针对索引中的所有文档执行。 对“the”的查询可能匹配许多文档,因此对相关性的影响要小于其他两个术语。
以前,这个问题的解决方案是忽略高频率的项。 通过将“the”视为停用词,我们减少索引大小并减少需要执行的术语查询的数量。
这种方法的问题是,虽然停用词对相关性有小的影响,但它们仍然很重要。 如果我们删除禁用词,我们失去精确性(例如,我们无法区分“快乐”和“不快乐”),我们失去回忆(例如像“The”或“To be or not be be” 存在于索引中)。
### 解决:
常见术语查询将查询项划分为两组:更重要的(即低频项)和不太重要的(即先前已经是停用词的高频项)。
首先它搜索与更重要的术语匹配的文档。 这些是出现在较少文件中并对相关性具有更大影响的术语。
然后,它对比不重要的术语执行第二次查询 - 经常出现并且对相关性影响较小的术语。 但是,不是计算所有匹配文档的相关性分数,而是仅计算已由第一个查询匹配的文档的分数。 以这种方式,高频项可以改进相关性计算,而不支付差的性能的成本。
如果查询仅由高频项组成,则单个查询作为AND(连接)查询执行,换句话说,所有项都是必需的。即使每个单独的术语将匹配许多文档,术语的组合将结果集缩小到仅最相关。单个查询也可以作为具有特定minimum_should_match的OR执行,在这种情况下,应该使用足够高的值。
基于cutoff频率将术语分配给高频组或低频组,其可以被指定为绝对频率(> = 1)或相对频率(0.0..1.0)。 (请记住,文档频率是按照每个分片级别计算的,如博文中所述的相关性已损坏)。
也许这个查询的最有趣的属性是它自动适应域特定的停用词。例如,在视频托管网站上,诸如“剪辑”或“视频”之类的常用术语将自动表现为停用词,而无需保留手动列表。
### 举例:
在该示例中,具有大于0.1%的文档频率(例如“this”和“is”)的词将被视为共同词。
|
`GET /_search`
`{`
`"query"``: {`
`"common"``: {`
`"body"``: {`
`"query"``: ``"this is bonsai cool"``,`
`"cutoff_frequency"``: ``0.001`
`}`
`}`
`}`
`}`
|
可以使用minimum_should_match(high_freq,low_freq),low_freq_operator(默认“或”)和high_freq_operator(默认“或”)参数来控制应匹配的术语数。
对于低频项,将low_freq_operator设置为“and”,以使所有项都是必需的:
|
`GET /_search`
`{`
`"query"``: {`
`"common"``: {`
`"body"``: {`
`"query"``: ``"nelly the elephant as a cartoon"``,`
`"cutoff_frequency"``: ``0.001``,`
`"low_freq_operator"``: ``"and"`
`}`
`}`
`}`
`}`
|
相当于:
|
`GET /_search`
`{`
`"query"``: {`
`"bool"``: {`
`"must"``: [`
`{ ``"term"``: { ``"body"``: ``"nelly"``}},`
`{ ``"term"``: { ``"body"``: ``"elephant"``}},`
`{ ``"term"``: { ``"body"``: ``"cartoon"``}}`
`],`
`"should"``: [`
`{ ``"term"``: { ``"body"``: ``"the"``}},`
`{ ``"term"``: { ``"body"``: ``"as"``}},`
`{ ``"term"``: { ``"body"``: ``"a"``}}`
`]`
`}`
`}`
`}`
|
或者使用minimum_should_match来指定必须存在的低频项的最小数量或百分比,例如:
|
`GET /_search`
`{`
`"query"``: {`
`"common"``: {`
`"body"``: {`
`"query"``: ``"nelly the elephant as a cartoon"``,`
`"cutoff_frequency"``: ``0.001``,`
`"minimum_should_match"``: ``2`
`}`
`}`
`}`
`}`
|
相当于:
|
`GET /_search`
`{`
`"query"``: {`
`"bool"``: {`
`"must"``: {`
`"bool"``: {`
`"should"``: [`
`{ ``"term"``: { ``"body"``: ``"nelly"``}},`
`{ ``"term"``: { ``"body"``: ``"elephant"``}},`
`{ ``"term"``: { ``"body"``: ``"cartoon"``}}`
`],`
`"minimum_should_match"``: ``2`
`}`
`},`
`"should"``: [`
`{ ``"term"``: { ``"body"``: ``"the"``}},`
`{ ``"term"``: { ``"body"``: ``"as"``}},`
`{ ``"term"``: { ``"body"``: ``"a"``}}`
`]`
`}`
`}`
`}`
|
minimum_should_match
可以对具有附加low_freq和high_freq参数的低频和高频项应用不同的minimum_should_match。 这里是一个提供附加参数的例子(注意结构的变化):
|
`GET /_search`
`{`
`"query"``: {`
`"common"``: {`
`"body"``: {`
`"query"``: ``"nelly the elephant not as a cartoon"``,`
`"cutoff_frequency"``: ``0.001``,`
`"minimum_should_match"``: {`
`"low_freq"` `: ``2``,`
`"high_freq"` `: ``3`
`}`
`}`
`}`
`}`
`}`
|
相当于:
|
`GET /_search`
`{`
`"query"``: {`
`"bool"``: {`
`"must"``: {`
`"bool"``: {`
`"should"``: [`
`{ ``"term"``: { ``"body"``: ``"nelly"``}},`
`{ ``"term"``: { ``"body"``: ``"elephant"``}},`
`{ ``"term"``: { ``"body"``: ``"cartoon"``}}`
`],`
`"minimum_should_match"``: ``2`
`}`
`},`
`"should"``: {`
`"bool"``: {`
`"should"``: [`
`{ ``"term"``: { ``"body"``: ``"the"``}},`
`{ ``"term"``: { ``"body"``: ``"not"``}},`
`{ ``"term"``: { ``"body"``: ``"as"``}},`
`{ ``"term"``: { ``"body"``: ``"a"``}}`
`],`
`"minimum_should_match"``: ``3`
`}`
`}`
`}`
`}`
`}`
|
在这种情况下,这意味着当至少有三个词时,高频词只对相关性有影响。 但是对于高频项,minimum_should_match的最有趣的使用是当只有高频项时:
|
`GET /_search`
`{`
`"query"``: {`
`"common"``: {`
`"body"``: {`
`"query"``: ``"how not to be"``,`
`"cutoff_frequency"``: ``0.001``,`
`"minimum_should_match"``: {`
`"low_freq"` `: ``2``,`
`"high_freq"` `: ``3`
`}`
`}`
`}`
`}`
`}`
|
相当于:
|
`GET /_search`
`{`
`"query"``: {`
`"bool"``: {`
`"should"``: [`
`{ ``"term"``: { ``"body"``: ``"how"``}},`
`{ ``"term"``: { ``"body"``: ``"not"``}},`
`{ ``"term"``: { ``"body"``: ``"to"``}},`
`{ ``"term"``: { ``"body"``: ``"be"``}}`
`],`
`"minimum_should_match"``: ``"3<50%"`
`}`
`}`
`}`
|
高频率生成的查询然后比使用AND稍微限制性。
常见的术语查询还支持boost,analyzer和disable_coord作为参数
- 入门
- 基本概念
- 安装
- 探索你的集群
- 集群健康
- 列出所有索引库
- 创建一个索引库
- 索引文档创建与查询
- 删除一个索引库
- 修改你的数据
- 更新文档
- 删除文档
- 批量处理
- 探索你的数据
- 搜索API
- 查询语言介绍
- 执行搜索
- 执行过滤
- 执行聚合
- 总结
- Elasticsearch设置
- 安装Elasticsearch
- .zip或.tar.gz文件的安装方式
- Install Elasticsearch with .zip on Windows
- Debian软件包安装方式
- RPM安装方式
- Install Elasticsearch with Windows MSI Installer
- Docker安装方式
- 配置Elasticsearch
- 安全配置
- 日志配置
- 重要的Elasticsearch配置
- 重要的系统配置
- 系统设置
- 在jvm.options中设置JVM堆大小
- 禁用swapping
- 文件描述符
- 虚拟内存
- 线程数
- DNS cache settings
- 启动前检查
- 堆大小检查
- 文件描述符检查
- 内存锁定检查
- 最大线程数检查
- 最大虚拟内存检查
- Max file size check
- 最大map数检查
- JVM Client模式检查
- 串行收集使用检查
- 系统调用过滤检查
- OnError与OnOutOfMemoryError检查
- Early-access check
- G1GC检查
- Elasticsearch停机
- Elasticsearch升级
- 滚动升级
- 全集群重启升级
- 索引重建升级
- Set up X-Pack
- Installing X-Pack
- X-Pack Settings
- Watcher Settings
- Configuring Security
- Breaking changes in 6.0
- X-Pack Breaking Changes
- 重大变化
- 6.0的重大变化
- 聚合变化
- Cat API变化
- 客户端变化
- 集群变化
- 文档API变化
- 索引变化
- 预处理变化
- 映射变化
- Packaging变化
- Percolator变化
- 插件变化
- 索引重建变化
- 信息统计变化
- DSL查询变化
- 设置变化
- 脚本变化
- API约定
- 多索引语法
- 索引库名称的日期运算
- 常用选项
- URL-based访问控制
- 文档APIs
- 读写文档
- 索引接口
- Get接口
- Delete API
- Delete By Query API
- Update API
- Update By Query API
- Multi Get API
- Bulk API
- Reindex API
- Term Vectors
- Multi termvectors API
- ?refresh
- 搜索APIs
- Search
- URI Search
- Request Body Search
- Query
- From / Size
- Sort
- Source filtering
- Fields
- Script Fields
- Doc value Fields
- Post filter
- Highlighting
- Rescoring
- Search Type
- Scroll
- Preference
- Explain
- Version
- Index Boost
- min_score
- Named Queries
- Inner hits
- Field Collapsing
- Search After
- Search Template
- Multi Search Template
- Search Shards API
- Suggesters
- Term suggester
- Phrase Suggester
- Completion Suggester
- Context Suggester
- Returning the type of the suggester
- Multi Search API
- Count API
- Validate API
- Explain API
- Profile API
- Profiling Queries
- Profiling Aggregations
- Profiling Considerations
- Field Capabilities API
- Aggregations
- Metrics Aggregations
- 平均值聚合
- 值计数聚合(Value Count Aggregation)
- Cardinality Aggregation
- Extended Stats Aggregation
- 地理边界聚合
- 地理重心聚合
- Max Aggregation
- Min Aggregation
- Percentiles Aggregation
- Percentile Ranks Aggregation
- Scripted Metric Aggregation
- Stats Aggregation
- Sum Aggregation
- Top hits Aggregation
- Value Count Aggregation
- Bucket Aggregations
- 邻接矩阵聚合
- Children Aggregation
- Date Histogram Aggregation
- Date Range Aggregation
- Significant Terms Aggregation
- Filter Aggregation(过滤器聚合)
- Filters Aggregation
- Geo Distance Aggregation(地理距离聚合) 转至元数据结尾
- GeoHash grid Aggregation(GeoHash网格聚合)
- Global Aggregation(全局聚合) 转至元数据结尾
- Histogram Aggregation
- IP Range Aggregation(IP范围聚合)
- Missing Aggregation
- Nested Aggregation(嵌套聚合)
- Range Aggregation(范围聚合)
- Reverse nested Aggregation
- Sampler Aggregation
- Significant Terms Aggregation
- Significant Text Aggregation
- Terms Aggregation
- Pipeline Aggregations
- Avg Bucket Aggregation
- Derivative Aggregation(导数聚合)
- Max Bucket Aggregation
- Min Bucket Aggregation
- Sum Bucket Aggregation
- Stats Bucket Aggregation
- Extended Stats Bucket Aggregation(扩展信息桶聚合)
- Percentiles Bucket Aggregation(百分数桶聚合)
- Moving Average Aggregation
- Cumulative Sum Aggregation(累积汇总聚合)
- Bucket Script Aggregation(桶脚本聚合)
- Bucket Selector Aggregation(桶选择器聚合)
- Serial Differencing Aggregation(串行差异聚合)
- Matrix Aggregations
- Matrix Stats
- Caching heavy aggregations
- Returning only aggregation results
- Aggregation Metadata
- Returning the type of the aggregation
- Indices APIs
- Create Index /创建索引
- Delete Index /删除索引
- Get Index /获取索引
- Indices Exists /索引存在
- Open / Close Index API /启动关闭索引
- Shrink Index /缩小索引
- Rollover Index/滚动索引
- Put Mapping /提交映射
- Get Mapping /获取映射
- Get Field Mapping /获取字段映射
- Types Exists
- Index Aliases
- Update Indices Settings
- Get Settings
- Analyze
- Explain Analyze
- Index Templates
- 索引统计信息
- 索引段
- 索引恢复
- 索引分片存储
- 清理缓存
- 刷新
- 同步刷新
- 重新加载
- 强制合并
- Cat APIs
- cat aliases
- cat allocation
- cat count
- cat fielddata
- cat health
- cat indices
- cat master
- cat nodeattrs
- cat nodes
- cat pending tasks
- cat plugins
- cat recovery
- cat repositories
- cat segments
- cat shards
- cat thread pool
- cat snapshots
- cat templates
- Cluster APIs
- 集群健康
- 集群状态
- 集群统计
- 挂起的集群任务
- 集群重新路由
- Cluster Update Settings
- Nodes Stats
- Nodes Info
- Nodes Feature Usage
- Remote Cluster Info
- Task Management API
- Nodes hot_threads
- Cluster Allocation Explain API
- Query DSL
- 查询context与过滤context
- Match All Query
- 全文搜索
- 匹配查询
- 短语匹配查询
- 短语前缀匹配查询
- 多字段查询
- 常用术语查询
- 查询语句查询
- 简单查询语句
- Term level queries
- Term Query
- Terms Query
- Range Query
- Exists Query
- Prefix Query
- Wildcard Query
- Regexp Query
- Fuzzy Query
- Type Query
- Ids Query
- 复合查询
- Constant Score 查询
- Bool 查询
- Dis Max 查询
- Function Score 查询
- Boosting 查询
- Joining queries
- Has Child Query
- Has Parent Query
- Nested Query(嵌套查询)
- Parent Id Query
- Geo queries
- GeoShape Query(地理形状查询)
- Geo Bounding Box Query(地理边框查询)
- Geo Distance Query(地理距离查询)
- Geo Polygon Query(地理多边形查询)
- Specialized queries
- More Like This Query
- Script Query
- Percolate Query
- Span queries
- Span Term 查询
- Span Multi Term 查询
- Span First 查询
- Span Near 查询
- Span Or 查询
- Span Not 查询
- Span Containing 查询
- Span Within 查询
- Span Field Masking 查询 转至元数据结尾
- Minimum Should Match
- Multi Term Query Rewrite
- Mapping
- Removal of mapping types
- Field datatypes
- Array
- Binary
- Range
- Boolean
- Date
- Geo-point datatype
- Geo-Shape datatype
- IP datatype
- Keyword datatype
- Nested datatype
- Numeric datatypes
- Object datatype
- Text
- Token数
- 渗滤型
- join datatype
- Meta-Fields
- _all field
- _field_names field
- _id field
- _index field
- _meta field
- _routing field
- _source field
- _type field
- _uid field
- Mapping parameters
- analyzer(分析器)
- normalizer(归一化)
- boost(提升)
- Coerce(强制类型转换)
- copy_to(合并参数)
- doc_values(文档值)
- dynamic(动态设置)
- enabled(开启字段)
- eager_global_ordinals
- fielddata(字段数据)
- format (日期格式)
- ignore_above(忽略超越限制的字段)
- ignore_malformed(忽略格式不对的数据)
- index (索引)
- index_options(索引设置)
- fields(字段)
- Norms (标准信息)
- null_value(空值)
- position_increment_gap(短语位置间隙)
- properties (属性)
- search_analyzer (搜索分析器)
- similarity (匹配方法)
- store(存储)
- Term_vectors(词根信息)
- Dynamic Mapping
- Dynamic field mapping(动态字段映射)
- Dynamic templates(动态模板)
- default mapping(mapping中的_default_)
- Analysis
- Anatomy of an analyzer(分析器的分析)
- Testing analyzers(测试分析器)
- Analyzers(分析器)
- Configuring built-in analyzers(配置内置分析器)
- Standard Analyzer(标准分析器)
- Simple Analyzer(简单分析器)
- 空白分析器
- Stop Analyzer
- Keyword Analyzer
- 模式分析器
- 语言分析器
- 指纹分析器
- 自定义分析器
- Normalizers
- Tokenizers(分词器)
- Standard Tokenizer(标准分词器)
- Letter Tokenizer
- Lowercase Tokenizer (小写分词器)
- Whitespace Analyzer
- UAX URL Email Tokenizer
- Classic Tokenizer
- Thai Tokenizer(泰语分词器)
- NGram Tokenizer
- Edge NGram Tokenizer
- Keyword Analyzer
- Pattern Tokenizer
- Simple Pattern Tokenizer
- Simple Pattern Split Tokenizer
- Path Hierarchy Tokenizer(路径层次分词器)
- Token Filters(词元过滤器)
- Standard Token Filter
- ASCII Folding Token Filter
- Flatten Graph Token Filter
- Length Token Filter
- Lowercase Token Filter
- Uppercase Token Filter
- NGram Token Filter
- Edge NGram Token Filter
- Porter Stem Token Filter
- Shingle Token Filter
- Stop Token Filter
- Word Delimiter Token Filter
- Word Delimiter Graph Token Filter
- Stemmer Token Filter
- Stemmer Override Token Filter
- Keyword Marker Token Filter
- Keyword Repeat Token Filter
- KStem Token Filter
- Snowball Token Filter
- Phonetic Token Filter
- Synonym Token Filter
- Synonym Graph Token Filter
- Compound Word Token Filters
- Reverse Token Filter
- Elision Token Filter
- Truncate Token Filter
- Unique Token Filter
- Pattern Capture Token Filter
- Pattern Replace Token Filter
- Trim Token Filter
- Limit Token Count Token Filter
- Hunspell Token Filter
- Common Grams Token Filter
- Normalization Token Filter
- CJK Width Token Filter
- CJK Bigram Token Filter
- Delimited Payload Token Filter
- Keep Words Token Filter
- Keep Types Token Filter
- Classic Token Filter
- Apostrophe Token Filter
- Decimal Digit Token Filter
- Fingerprint Token Filter
- Minhash Token Filter
- Character Filters(字符过滤器)
- HTML Strip Character Filter
- Mapping Character Filter
- Pattern Replace Character Filter
- 模块
- Cluster
- 集群级路由和碎片分配
- 基于磁盘的分片分配
- 分片分配awareness
- 分片分配过滤
- Miscellaneous cluster settings
- Scripting
- Painless Scripting Language
- Lucene Expressions Language
- Advanced scripts using script engines
- Snapshot And Restore
- Thread Pool
- Index Modules(索引模块)
- 预处理节点
- Pipeline Definition
- Ingest APIs
- Put Pipeline API
- Get Pipeline API
- Delete Pipeline API
- Simulate Pipeline API
- Accessing Data in Pipelines
- Handling Failures in Pipelines
- Processors
- Monitoring Elasticsearch
- X-Pack APIs
- X-Pack Commands
- How To
- Testing(测试)
- Glossary of terms
- Release Notes
- X-Pack Release Notes