多应用+插件架构,代码干净,二开方便,首家独创一键云编译技术,文档视频完善,免费商用码云13.8K 广告
## Geo Distance Aggregation 在geo_point字段上工作的多bucket聚合和概念上的工作非常类似于[range](https://www.elastic.co/guide/en/elasticsearch/reference/current/search-aggregations-bucket-range-aggregation.html)(范围)聚合.用户可以定义原点的点和距离范围的集合。聚合计算每个文档值与原点的距离,并根据范围确定其所属的bucket(桶)(如果文档和原点之间的距离落在bucket(桶)的距离范围内,则文档属于bucket(桶) ) | `PUT /museums` `{` `"mappings": {` `"doc": {` `"properties": {` `"location": {` `"type": "geo_point"` `}` `}` `}` `}` `}` `POST /museums/doc/_bulk?refresh` `{"index":{"_id":1}}` `{"location": "52.374081,4.912350", "name": "NEMO Science Museum"}` `{"index":{"_id":2}}` `{"location": "52.369219,4.901618", "name": "Museum Het Rembrandthuis"}` `{"index":{"_id":3}}` `{"location": "52.371667,4.914722", "name": "Nederlands Scheepvaartmuseum"}` `{"index":{"_id":4}}` `{"location": "51.222900,4.405200", "name": "Letterenhuis"}` `{"index":{"_id":5}}` `{"location": "48.861111,2.336389", "name": "Musée du Louvre"}` `{"index":{"_id":6}}` `{"location": "48.860000,2.327000", "name": "Musée d'Orsay"}` `POST /museums/_search?size=0` `{` `"aggs" : {` `"rings_around_amsterdam" : {` `"geo_distance" : {` `"field" : "location",` `"origin" : "52.3760, 4.894",` `"ranges" : [` `{ "to" : 100000 },` `{ "from" : 100000, "to" : 300000 },` `{ "from" : 300000 }` `]` `}` `}` `}` `}` | 响应结果: | `{` `...` `"aggregations": {` `"rings_around_amsterdam" : {` `"buckets": [` `{` `"key": "*-100000.0",` `"from": 0.0,` `"to": 100000.0,` `"doc_count": 3` `},` `{` `"key": "100000.0-300000.0",` `"from": 100000.0,` `"to": 300000.0,` `"doc_count": 1` `},` `{` `"key": "300000.0-*",` `"from": 300000.0,` `"doc_count": 2` `}` `]` `}` `}` `}` | 指定的字段必须是geo_point类型(只能在映射中显式设置)。它还可以保存一个geo_point字段的数组,在这种情况下,在聚合期间将考虑所有这些字段。原点可以接受[geo_point](https://www.elastic.co/guide/en/elasticsearch/reference/current/geo-point.html)类型支持的所有格式: * 对象格式:{ "lat" : 52.3760, "lon" : 4.894 }- 这是最安全的格式,因为它是最明确的lat (纬度)& lon(经度)值 * 字符串格式:"52.3760, 4.894"  - 第一个数值是lat(纬度),第二个是lon(经度) * 数组格式:[4.894, 52.3760]  - 它基于GeoJson标准,第一个数字是lon(经度),第二个数字是lat(纬度) 在默认情况下,距离单位是m(米),但它也可以接受:mi(英里),in(英寸),yd(码),km(公里),cm(厘米),毫米(毫米)。 | `POST /museums/_search?size=0` `{` `"aggs" : {` `"rings" : {` `"geo_distance" : {` `"field" : "location",` `"origin" : "52.3760, 4.894",` `"unit" : "km", #1` `"ranges" : [` `{ "to" : 100 },` `{ "from" : 100, "to" : 300 },` `{ "from" : 300 }` `]` `}` `}` `}` `}` | #1   距离将以公里计算 有两种距离计算模式:arc(默认) 和 plane, arc(电弧)计算模式是最准确的,plane模式是最快的,但是最不准确。当考虑搜索上下文是“narrow”,跨越较小的地理区域(约5km)可以用plane,plane将为非常大的区域(例如跨大陆搜索)的搜索返回更高的误差区间。距离计算类型可以使用distance_type参数设置。     | `POST /museums/_search?size=0` `{` `"aggs" : {` `"rings" : {` `"geo_distance" : {` `"field" : "location",` `"origin" : "52.3760, 4.894",` `"unit" : "km",` `"distance_type" : "plane",` `"ranges" : [` `{ "to" : 100 },` `{ "from" : 100, "to" : 300 },` `{ "from" : 300 }` `]` `}` `}` `}` `}` |   ### Keyed Response 将keyed标志设置为true会将一个惟一的字符串键与每个bucket(桶)关联起来,并将范围作为散列而不是数组返回: | `POST /museums/_search?size=0` `{` `"aggs" : {` `"rings_around_amsterdam" : {` `"geo_distance" : {` `"field" : "location",` `"origin" : "52.3760, 4.894",` `"ranges" : [` `{ "to" : 100000 },` `{ "from" : 100000, "to" : 300000 },` `{ "from" : 300000 }` `],` `"keyed": true` `}` `}` `}` `}` | 返回结果: | `{` `...` `"aggregations": {` `"rings_around_amsterdam" : {` `"buckets": {` `"*-100000.0": {` `"from": 0.0,` `"to": 100000.0,` `"doc_count": 3` `},` `"100000.0-300000.0": {` `"from": 100000.0,` `"to": 300000.0,` `"doc_count": 1` `},` `"300000.0-*": {` `"from": 300000.0,` `"doc_count": 2` `}` `}` `}` `}` `}` | 也可以为每个范围自定义key | `POST /museums/_search?size=0` `{` `"aggs" : {` `"rings_around_amsterdam" : {` `"geo_distance" : {` `"field" : "location",` `"origin" : "52.3760, 4.894",` `"ranges" : [` `{ "to" : 100000, "key": "first_ring" },` `{ "from" : 100000, "to" : 300000, "key": "second_ring" },` `{ "from" : 300000, "key": "third_ring" }` `],` `"keyed": true` `}` `}` `}` `}` | 返回结果: | `{` `...` `"aggregations": {` `"rings_around_amsterdam" : {` `"buckets": {` `"first_ring": {` `"from": 0.0,` `"to": 100000.0,` `"doc_count": 3` `},` `"second_ring": {` `"from": 100000.0,` `"to": 300000.0,` `"doc_count": 1` `},` `"third_ring": {` `"from": 300000.0,` `"doc_count": 2` `}` `}` `}` `}` `}` |