# MapReduce 教程
[TOC]
## Purpose 目标
This document comprehensively describes all user-facing facets of the Hadoop MapReduce framework and serves as a tutorial.
这个文档综合地描述了所有面向用户的Hadoop MapReduce 框架和服务。
## Prerequisites必要准备
Ensure that Hadoop is installed, configured and is running. More details:
请确保安装、配置并运行起来 Hadoop,更多的请参考环境安装环节(下面的是原文链接,英文不错的可以试试)
* [Single Node Setup](http://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-common/SingleCluster.html)for first-time users.
* [Cluster Setup](http://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-common/ClusterSetup.html)for large, distributed clusters.
## Overview
Hadoop MapReduce is a software framework for easily writing applications which process vast amounts of data (multi-terabyte data-sets) in-parallel on large clusters (thousands of nodes) of commodity hardware in a reliable, fault-tolerant manner.
A MapReduce*job*usually splits the input data-set into independent chunks which are processed by the*map tasks*in a completely parallel manner. The framework sorts the outputs of the maps, which are then input to the*reduce tasks*. Typically both the input and the output of the job are stored in a file-system. The framework takes care of scheduling tasks, monitoring them and re-executes the failed tasks.
Typically the compute nodes and the storage nodes are the same, that is, the MapReduce framework and the Hadoop Distributed File System (see[HDFS Architecture Guide](http://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html)) are running on the same set of nodes. This configuration allows the framework to effectively schedule tasks on the nodes where data is already present, resulting in very high aggregate bandwidth across the cluster.
The MapReduce framework consists of a single masterResourceManager, one slaveNodeManagerper cluster-node, andMRAppMasterper application (see[YARN Architecture Guide](http://hadoop.apache.org/docs/stable/hadoop-yarn/hadoop-yarn-site/YARN.html)).
Minimally, applications specify the input/output locations and supply*map*and*reduce*functions via implementations of appropriate interfaces and/or abstract-classes. These, and other job parameters, comprise the*job configuration*.
The Hadoop*job client*then submits the job (jar/executable etc.) and configuration to theResourceManagerwhich then assumes the responsibility of distributing the software/configuration to the slaves, scheduling tasks and monitoring them, providing status and diagnostic information to the job-client.
Although the Hadoop framework is implemented in Java™, MapReduce applications need not be written in Java.
* [Hadoop Streaming](http://hadoop.apache.org/docs/stable/api/org/apache/hadoop/streaming/package-summary.html)is a utility which allows users to create and run jobs with any executables (e.g. shell utilities) as the mapper and/or the reducer.
* [Hadoop Pipes](http://hadoop.apache.org/docs/stable/api/org/apache/hadoop/mapred/pipes/package-summary.html)is a[SWIG](http://www.swig.org/)\-compatible C++ API to implement MapReduce applications (non JNI™ based).
- 前言
- 虚拟机
- 前言
- 入门指南
- 集群规划
- 常用网址
- Hadoop集群常用端口
- 安装
- HA 环境安装教程
- 创建用户
- 设置SSH无密码登录
- MySQL安装
- 安装java
- 安装zookeeper
- hadoop 安装
- Hadoop HA 安装
- hadoop详细维护命令
- 集群性能测试
- 启动
- hadoop使用案例
- 安装hbase
- hive
- server2
- HA+联邦集群安装
- 常用
- 常用知识点
- HDFS
- HDFS 架构
- MapReduce
- MapReduce 教程
- HBase使用手册
- 简介
- HBase入门
- 安装HBase
- HBase管理页面
- 和HBase交互
- HBase Shell快速入门
- HBase数据模型
- HBase Schema设计
- HBase架构
- HBase安全
- HBase Shell命令
- HBase JSON配置使用说明
- HBase API使用说明
- HBase API运行教程
- HBase SQL基础
- HIVE
- 附录
- 各种数据库
- 操作系统教程
- centos7.4三机准备
- 防火墙
- 软件安装
- 伪双击安装指南
- 操作系统准备