企业🤖AI智能体构建引擎,智能编排和调试,一键部署,支持私有化部署方案 广告
# 语料库和向量空间 本教程[在此处](https://github.com/piskvorky/gensim/blob/develop/docs/notebooks/Corpora_and_Vector_Spaces.ipynb)以Jupyter Notebook的形式提供。 别忘了设置 ```py >>> import logging >>> logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.INFO) ``` 如果你想看到记录事件。 ## [从字符串到向量](https://radimrehurek.com/gensim/tut1.html#from-strings-to-vectors "永久链接到这个标题") 这一次,让我们从表示为字符串的文档开始: ```py >>> from gensim import corpora >>> >>> documents = ["Human machine interface for lab abc computer applications", >>> "A survey of user opinion of computer system response time", >>> "The EPS user interface management system", >>> "System and human system engineering testing of EPS", >>> "Relation of user perceived response time to error measurement", >>> "The generation of random binary unordered trees", >>> "The intersection graph of paths in trees", >>> "Graph minors IV Widths of trees and well quasi ordering", >>> "Graph minors A survey"] ``` 这是一个由九个文档组成的小型语料库,每个文档只包含一个句子。 首先,让我们对文档进行标记,删除常用单词(使用玩具停止列表)以及仅在语料库中出现一次的单词: ```py >>> # remove common words and tokenize >>> stoplist = set('for a of the and to in'.split()) >>> texts = [[word for word in document.lower().split() if word not in stoplist] >>> for document in documents] >>> >>> # remove words that appear only once >>> from collections import defaultdict >>> frequency = defaultdict(int) >>> for text in texts: >>> for token in text: >>> frequency[token] += 1 >>> >>> texts = [[token for token in text if frequency[token] > 1] >>> for text in texts] >>> >>> from pprint import pprint # pretty-printer >>> pprint(texts) [['human', 'interface', 'computer'], ['survey', 'user', 'computer', 'system', 'response', 'time'], ['eps', 'user', 'interface', 'system'], ['system', 'human', 'system', 'eps'], ['user', 'response', 'time'], ['trees'], ['graph', 'trees'], ['graph', 'minors', 'trees'], ['graph', 'minors', 'survey']] ``` 您处理文件的方式可能会有所不同; 在这里,我只拆分空格来标记,然后小写每个单词。实际上,我使用这种特殊的(简单和低效)设置来模仿Deerwester等人的原始LSA文章[[1]中](https://radimrehurek.com/gensim/tut1.html#id3)所做的实验。 处理文档的方式是多种多样的,依赖于应用程序和语言,我决定*不*通过任何接口约束它们。相反,文档由从中提取的特征表示,而不是由其“表面”字符串形式表示:如何使用这些特征取决于您。下面我描述一种常见的通用方法(称为 *词袋*),但请记住,不同的应用程序域需要不同的功能,而且,一如既往,它是[垃圾,垃圾输出](https://en.wikipedia.org/wiki/Garbage_In,_Garbage_Out) ...... 要将文档转换为向量,我们将使用名为[bag-of-words](https://en.wikipedia.org/wiki/Bag_of_words)的文档表示 。在此表示中,每个文档由一个向量表示,其中每个向量元素表示问题 - 答案对,格式为: > “单词系统出现在文档中的次数是多少?一旦。” 仅通过它们的(整数)id来表示问题是有利的。问题和ID之间的映射称为字典: ```py >>> dictionary = corpora.Dictionary(texts) >>> dictionary.save('/tmp/deerwester.dict') # store the dictionary, for future reference >>> print(dictionary) Dictionary(12 unique tokens) ``` 在这里,我们为语料库中出现的所有单词分配了一个唯一的整数id [`gensim.corpora.dictionary.Dictionary`](https://radimrehurek.com/gensim/corpora/dictionary.html#gensim.corpora.dictionary.Dictionary "gensim.corpora.dictionary.Dictionary")。这会扫描文本,收集字数和相关统计数据。最后,我们看到在处理过的语料库中有12个不同的单词,这意味着每个文档将由12个数字表示(即,通过12-D向量)。要查看单词及其ID之间的映射: ```py >>> print(dictionary.token2id) {'minors': 11, 'graph': 10, 'system': 5, 'trees': 9, 'eps': 8, 'computer': 0, 'survey': 4, 'user': 7, 'human': 1, 'time': 6, 'interface': 2, 'response': 3} ``` 要将标记化文档实际转换为向量: ```py >>> new_doc = "Human computer interaction" >>> new_vec = dictionary.doc2bow(new_doc.lower().split()) >>> print(new_vec) # the word "interaction" does not appear in the dictionary and is ignored [(0, 1), (1, 1)] ``` 该函数`doc2bow()`只计算每个不同单词的出现次数,将单词转换为整数单词id,并将结果作为稀疏向量返回。 因此,稀疏向量 `[(0, 1), (1, 1)]` 读取:在文档“人机交互”中,单词computer (id 0)和human(id 1)出现一次; 其他十个字典单词(隐含地)出现零次。 ```py >>> corpus = [dictionary.doc2bow(text) for text in texts] >>> corpora.MmCorpus.serialize('/tmp/deerwester.mm', corpus) # store to disk, for later use >>> print(corpus) [(0, 1), (1, 1), (2, 1)] [(0, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1)] [(2, 1), (5, 1), (7, 1), (8, 1)] [(1, 1), (5, 2), (8, 1)] [(3, 1), (6, 1), (7, 1)] [(9, 1)] [(9, 1), (10, 1)] [(9, 1), (10, 1), (11, 1)] [(4, 1), (10, 1), (11, 1)] ``` 到目前为止,应该清楚的是,矢量要素 `id=10` 代表问题“文字中出现多少次文字?”,前六个文件的答案为“零”,其余三个答案为“一” 。事实上,我们已经得到了与[快速示例](https://radimrehurek.com/gensim/tutorial.html#first-example)中完全相同的向量语料库。 ## [语料库流 - 一次一个文档](https://radimrehurek.com/gensim/tut1.html#corpus-streaming-one-document-at-a-time "永久链接到这个标题") 请注意,上面的语料库完全驻留在内存中,作为普通的Python列表。在这个简单的例子中,它并不重要,但为了使事情清楚,让我们假设语料库中有数百万个文档。将所有这些存储在RAM中是行不通的。相反,我们假设文档存储在磁盘上的文件中,每行一个文档。gensim只要求语料库必须能够一次返回一个文档向量: ```py >>> class MyCorpus(object): >>> def __iter__(self): >>> for line in open('mycorpus.txt'): >>> # assume there's one document per line, tokens separated by whitespace >>> yield dictionary.doc2bow(line.lower().split()) ``` 在[此处](https://radimrehurek.com/gensim/mycorpus.txt)下载示例[mycorpus.txt文件](https://radimrehurek.com/gensim/mycorpus.txt)。假设每个文档在单个文件中占据一行并不重要; 您可以模拟__iter__函数以适合您的输入格式,无论它是什么。行走目录,解析XML,访问网络......只需解析输入以在每个文档中检索一个干净的标记列表,然后通过字典将标记转换为它们的ID,并在__iter__中生成生成的稀疏向量。 ```py >>> corpus_memory_friendly = MyCorpus() # doesn't load the corpus into memory! >>> print(corpus_memory_friendly) ``` 语料库现在是一个对象。我们没有定义任何打印方式,因此print只输出内存中对象的地址。不是很有用。要查看构成向量,让我们遍历语料库并打印每个文档向量(一次一个): ```py >>> for vector in corpus_memory_friendly: # load one vector into memory at a time ... print(vector) [(0, 1), (1, 1), (2, 1)] [(0, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1)] [(2, 1), (5, 1), (7, 1), (8, 1)] [(1, 1), (5, 2), (8, 1)] [(3, 1), (6, 1), (7, 1)] [(9, 1)] [(9, 1), (10, 1)] [(9, 1), (10, 1), (11, 1)] [(4, 1), (10, 1), (11, 1)] ``` 尽管输出与普通Python列表的输出相同,但语料库现在更加内存友好,因为一次最多只有一个向量驻留在RAM中。您的语料库现在可以随意扩展。 类似地,构造字典而不将所有文本加载到内存中: ```py >>> from six import iteritems >>> # collect statistics about all tokens >>> dictionary = corpora.Dictionary(line.lower().split() for line in open('mycorpus.txt')) >>> # remove stop words and words that appear only once >>> stop_ids = [dictionary.token2id[stopword] for stopword in stoplist >>> if stopword in dictionary.token2id] >>> once_ids = [tokenid for tokenid, docfreq in iteritems(dictionary.dfs) if docfreq == 1] >>> dictionary.filter_tokens(stop_ids + once_ids) # remove stop words and words that appear only once >>> dictionary.compactify() # remove gaps in id sequence after words that were removed >>> print(dictionary) Dictionary(12 unique tokens) ``` 这就是它的全部!至少就字袋表示而言。当然,我们用这种语料库做的是另一个问题; 如何计算不同单词的频率可能是有用的,这一点都不清楚。事实证明,它不是,我们需要首先对这个简单的表示应用转换,然后才能使用它来计算任何有意义的文档与文档的相似性。转换将[在下一个教程中介绍](https://radimrehurek.com/gensim/tut2.html),但在此之前,让我们简单地将注意力转向*语料库持久性*。 ## [语料库格式](https://radimrehurek.com/gensim/tut1.html#corpus-formats "永久链接到这个标题") 存在几种用于将Vector Space语料库(〜矢量序列)序列化到磁盘的文件格式。 gensim通过前面提到的*流式语料库接口*实现它们:文件以懒惰的方式从(分别存储到)磁盘读取,一次一个文档,而不是一次将整个语料库读入主存储器。 [市场矩阵格式](http://math.nist.gov/MatrixMarket/formats.html)是一种比较值得注意的文件[格式](http://math.nist.gov/MatrixMarket/formats.html)。要以Matrix Market格式保存语料库: ```py >>> # create a toy corpus of 2 documents, as a plain Python list >>> corpus = [[(1, 0.5)], []] # make one document empty, for the heck of it >>> >>> corpora.MmCorpus.serialize('/tmp/corpus.mm', corpus) ``` 其他格式包括[Joachim的SVMlight格式](http://svmlight.joachims.org/), [Blei的LDA-C格式](https://www.cs.princeton.edu/~blei/lda-c/)和 [GibbsLDA ++格式](http://gibbslda.sourceforge.net/)。 ```py >>> corpora.SvmLightCorpus.serialize('/tmp/corpus.svmlight', corpus) >>> corpora.BleiCorpus.serialize('/tmp/corpus.lda-c', corpus) >>> corpora.LowCorpus.serialize('/tmp/corpus.low', corpus) ``` 相反,要从Matrix Market文件加载语料库迭代器: ```py >>> corpus = corpora.MmCorpus('/tmp/corpus.mm') ``` 语料库对象是流,因此通常您将无法直接打印它们: ```py >>> print(corpus) MmCorpus(2 documents, 2 features, 1 non-zero entries) ``` 相反,要查看语料库的内容: ```py >>> # one way of printing a corpus: load it entirely into memory >>> print(list(corpus)) # calling list() will convert any sequence to a plain Python list [[(1, 0.5)], []] ``` 要么 ```py >>> # another way of doing it: print one document at a time, making use of the streaming interface >>> for doc in corpus: ... print(doc) [(1, 0.5)] [] ``` 第二种方式显然对内存更友好,但是出于测试和开发目的,没有什么比调用的简单性更好`list(corpus)`。 要以Blei的LDA-C格式保存相同的Matrix Market文档流, ```py >>> corpora.BleiCorpus.serialize('/tmp/corpus.lda-c', corpus) ``` 通过这种方式,gensim还可以用作内存高效的**I / O格式转换工具**:只需使用一种格式加载文档流,然后立即以另一种格式保存。添加新格式非常容易,请查看[SVMlight语料库](https://github.com/piskvorky/gensim/blob/develop/gensim/corpora/svmlightcorpus.py)的[代码](https://github.com/piskvorky/gensim/blob/develop/gensim/corpora/svmlightcorpus.py)示例。 ## [与NumPy和SciPy的兼容性](https://radimrehurek.com/gensim/tut1.html#compatibility-with-numpy-and-scipy "永久链接到这个标题") gensim还包含[有效的实用程序函数](https://radimrehurek.com/gensim/matutils.html) 来帮助转换为/ numpy矩阵: ```py >>> import gensim >>> import numpy as np >>> numpy_matrix = np.random.randint(10, size=[5,2]) # random matrix as an example >>> corpus = gensim.matutils.Dense2Corpus(numpy_matrix) >>> numpy_matrix = gensim.matutils.corpus2dense(corpus, num_terms=number_of_corpus_features) ``` 从/到scipy.sparse矩阵: ```py >>> import scipy.sparse >>> scipy_sparse_matrix = scipy.sparse.random(5,2) # random sparse matrix as example >>> corpus = gensim.matutils.Sparse2Corpus(scipy_sparse_matrix) >>> scipy_csc_matrix = gensim.matutils.corpus2csc(corpus) ``` --- 要获得完整的参考(想要将字典修剪为更小的尺寸?优化语料库和NumPy / SciPy数组之间的转换?),请参阅[API文档](https://radimrehurek.com/gensim/apiref.html)。或者继续下一个关于[主题和转换的](https://radimrehurek.com/gensim/tut2.html)教程。 [[1]](https://radimrehurek.com/gensim/tut1.html#id1) 这与[Deerwester等人](http://www.cs.bham.ac.uk/~pxt/IDA/lsa_ind.pdf)使用的语料库相同 [。](http://www.cs.bham.ac.uk/~pxt/IDA/lsa_ind.pdf)[(1990):通过潜在语义分析进行索引](http://www.cs.bham.ac.uk/~pxt/IDA/lsa_ind.pdf),表2。