# Dynamical billiards
# 动态台球
[](https://en.wikipedia.org/wiki/Dynamical_billiards#mw-head)[](https://en.wikipedia.org/wiki/Dynamical_billiards#p-search)
[![](https://upload.wikimedia.org/wikipedia/commons/thumb/b/b6/BunimovichStadium.svg/220px-BunimovichStadium.svg.png)](https://en.wikipedia.org/wiki/File:BunimovichStadium.svg)
Bunimovich体育场是一个动力台球的混动系统
一个**台球(系统)**是一个[动力系统](https://en.wikipedia.org/wiki/Dynamical_system "动力系统"),其中运动之间以直线和颗粒交替[镜面反射](https://en.wikipedia.org/wiki/Specular_reflection "镜面反射")从边界。当粒子撞击边界时,它会从中反射而不会降低[速度](https://en.wikipedia.org/wiki/Speed "速度")。台球动力系统是[台球比赛的](https://en.wikipedia.org/wiki/Billiards "台球")[汉密尔顿](https://en.wikipedia.org/wiki/Hamiltonian_mechanics "哈密顿力学")理想化,但边界所包含的区域可以具有矩形以外的形状甚至是多维的。也可以在[非欧几里德几何](https://en.wikipedia.org/wiki/Non-Euclidean_geometry "非欧几里德几何")上研究动态台球;实际上,对台球的最初研究确定了它们在恒定负面的[表面上](https://en.wikipedia.org/wiki/Surface_(mathematics) "Surface (mathematics)")的[遍历运动](https://en.wikipedia.org/wiki/Ergodic_theory "遍历理论")[](https://en.wikipedia.org/wiki/Billiards "台球")[](https://en.wikipedia.org/wiki/Non-Euclidean_geometry "非欧几里德几何")[](https://en.wikipedia.org/wiki/Ergodic_theory "遍历理论")[](https://en.wikipedia.org/wiki/Surface_(mathematics) "表面(数学)")[曲率](https://en.wikipedia.org/wiki/Curvature "曲率")。对台球进行的研究被称为[外围台球](https://en.wikipedia.org/wiki/Outer_billiard "外面的台球")理论,而不是被保存在一个区域内。
台球中粒子的运动是在与边界的反射之间具有恒定能量的直线(如果台球桌的[黎曼度量](https://en.wikipedia.org/wiki/Riemannian_metric "黎曼度量")不是平坦的,则是[短程线](https://en.wikipedia.org/wiki/Geodesic "短程"))。所有[反射](https://en.wikipedia.org/wiki/Reflection_(physics) "反思(物理学)")都是[镜面反射](https://en.wikipedia.org/wiki/Specular_reflection "镜面反射"):碰撞前的[入射角](https://en.wikipedia.org/wiki/Angle_of_incidence_(optics) "入射角(光学)")等于碰撞后的[反射角](https://en.wikipedia.org/wiki/Angle_of_reflection "反射角度")。所述[序列](https://en.wikipedia.org/wiki/Sequence "序列")的反射是由描述**台球地图**完全表征粒子的运动。[](https://en.wikipedia.org/wiki/Riemannian_metric "黎曼度量")[](https://en.wikipedia.org/wiki/Reflection_(physics) "反思(物理学)")[](https://en.wikipedia.org/wiki/Specular_reflection "镜面反射")[](https://en.wikipedia.org/wiki/Angle_of_incidence_(optics) "入射角(光学)")[](https://en.wikipedia.org/wiki/Angle_of_reflection "反射角度")[](https://en.wikipedia.org/wiki/Sequence "序列")
台球捕捉哈密尔顿系统的所有复杂性,从[可积性](https://en.wikipedia.org/wiki/Integrable_system "可积系统")到[混沌运动](https://en.wikipedia.org/wiki/Chaos_theory "混沌理论"),没有整合[运动方程](https://en.wikipedia.org/wiki/Equations_of_motion "运动方程")以确定其[庞加莱图](https://en.wikipedia.org/wiki/Poincar%C3%A9_map "庞加莱地图")的困难。[Birkhoff](https://en.wikipedia.org/wiki/George_David_Birkhoff "乔治大卫伯克霍夫")表明,具有[椭圆形](https://en.wikipedia.org/wiki/Ellipse "椭圆")桌子的台球系统是可积的。
## 内容
* [1运动方程](https://en.wikipedia.org/wiki/Dynamical_billiards#Equations_of_motion)
* [2著名的台球和台球课程](https://en.wikipedia.org/wiki/Dynamical_billiards#Notable_billiards_and_billiard_classes)
* [2.1Hadamard的台球](https://en.wikipedia.org/wiki/Dynamical_billiards#Hadamard's_billiards)
* [2.2Artin的台球](https://en.wikipedia.org/wiki/Dynamical_billiards#Artin's_billiard)
* [2.3分散和半分散台球](https://en.wikipedia.org/wiki/Dynamical_billiards#Dispersing_and_Semi-Dispersing_billiards)
* [2.4硬球系统](https://en.wikipedia.org/wiki/Dynamical_billiards#Hard_ball_system)
* [2.5洛伦兹气体](https://en.wikipedia.org/wiki/Dynamical_billiards#Lorentz_gas)
* [2.6布尼莫维奇体育场](https://en.wikipedia.org/wiki/Dynamical_billiards#Bunimovich_stadium)
* [2.7广义台球](https://en.wikipedia.org/wiki/Dynamical_billiards#Generalized_billiards)
* [3量子混沌](https://en.wikipedia.org/wiki/Dynamical_billiards#Quantum_chaos)
* [4应用](https://en.wikipedia.org/wiki/Dynamical_billiards#Applications)
* [5另见](https://en.wikipedia.org/wiki/Dynamical_billiards#See_also)
* [6注意事项](https://en.wikipedia.org/wiki/Dynamical_billiards#Notes)
* [7参考文献](https://en.wikipedia.org/wiki/Dynamical_billiards#References)
* [7.1西奈的台球](https://en.wikipedia.org/wiki/Dynamical_billiards#Sinai's_billiards)
* [7.2奇怪的台球](https://en.wikipedia.org/wiki/Dynamical_billiards#Strange_billiards)
* [7.3布尼莫维奇体育场](https://en.wikipedia.org/wiki/Dynamical_billiards#Bunimovich_stadium_2)
* [7.4广义台球](https://en.wikipedia.org/wiki/Dynamical_billiards#Generalized_billiards_2)
* [8外部链接](https://en.wikipedia.org/wiki/Dynamical_billiards#External_links)
## 运动方程\[(https://en.wikipedia.org/w/index.php?title=Dynamical_billiards&action=edit§ion=1 "编辑部分:运动方程")\]
质量为*m*的粒子的[哈密顿](https://en.wikipedia.org/wiki/Hamiltonian_(quantum_mechanics) "哈密顿量子(量子力学)")量是在表面没有摩擦的情况下自由移动的:
{\\ displaystyle H(p,q)= {\\ frac {p ^ {2}} {2m}} + V(q)}![H(p,q)= {\ frac {p ^ {2}} {2m}} + V(q)](https://wikimedia.org/api/rest_v1/media/math/render/svg/b33cd99495535f5d196acc03befbfcdbc1ea6c3a)
哪里{\\ displaystyle V(q)}![V(q)的](https://wikimedia.org/api/rest_v1/media/math/render/svg/5dac6b17a8a7818fb4a89bd32f85daec2eb233f5)是一个在该地区内设计为零的潜力{\\ displaystyle \\ Omega}![\欧米茄 ](https://wikimedia.org/api/rest_v1/media/math/render/svg/24b0d5ca6f381068d756f6337c08e0af9d1eeb6f)粒子可以移动,否则无限远:
{\\ displaystyle V(q)= {\\ begin {cases} 0&q \\ in \\ Omega \\\\\\ infty&q \\ notin \\ Omega \\ end {cases}}}![V(q)= {\ begin {cases} 0&q \ in \ Omega \\\ infty&q \ notin \ Omega \ end {cases}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/2568cde41dbf5dac7289920940fea04382ec5317)
这种形式的潜力保证了边界的[镜面反射](https://en.wikipedia.org/wiki/Specular_reflection "镜面反射")。动力学术语保证粒子在一条直线上移动,而没有任何能量变化。如果粒子要在非欧几里德[流形](https://en.wikipedia.org/wiki/Manifold "多种")上移动,那么哈密顿量将被替换为:
{\\ displaystyle H(p,q)= {\\ frac {1} {2m}} p ^ {i} p ^ {j} g\_ {ij}(q)+ V(q)}![H(p,q)= {\ frac {1} {2m}} p ^ {i} p ^ {j} g_ {ij}(q)+ V(q)](https://wikimedia.org/api/rest_v1/media/math/render/svg/c83f1ada2de8e96f33712cb4571fa3903f880767)
哪里{\\ displaystyle g\_ {ij}(q)}![{\ displaystyle g_ {ij}(q)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/9207e4631f84fe0a9736f5602400901096e67f11)是点的[度量张量](https://en.wikipedia.org/wiki/Metric_tensor "公制张量"){\\ displaystyle q \\; \\ in \\; \\ Omega}![{\ displaystyle q \; \ in \; \ Omega}](https://wikimedia.org/api/rest_v1/media/math/render/svg/5701c737795c41836758529726d16af32c3b3496)。由于这个哈密顿量的结构非常简单,粒子[的运动方程式](https://en.wikipedia.org/wiki/Equations_of_motion "运动方程")[Hamilton-Jacobi方程](https://en.wikipedia.org/wiki/Hamilton%E2%80%93Jacobi_equation "Hamilton-Jacobi方程")只不过是流形上的[测地方程](https://en.wikipedia.org/wiki/Geodesic_equation "测地方程"):粒子沿着[测地线](https://en.wikipedia.org/wiki/Geodesic "短程")移动。
## 著名的台球和台球课\[(https://en.wikipedia.org/w/index.php?title=Dynamical_billiards&action=edit§ion=2 "编辑部分:着名的台球和台球课程")\]
### 哈达玛的台球\[(https://en.wikipedia.org/w/index.php?title=Dynamical_billiards&action=edit§ion=3 "编辑部分:Hadamard的台球")\]
主要文章:[Hadamard的动力系统](https://en.wikipedia.org/wiki/Hadamard%27s_dynamical_system "Hadamard的动力系统")
Hadamard的台球涉及自由点粒子在恒定负曲率表面上的运动,特别是具有负曲率的最简单的紧致[黎曼表面](https://en.wikipedia.org/wiki/Riemann_surface "黎曼表面"),即2类表面(双孔圆环)。该模型[完全可以解决](https://en.wikipedia.org/wiki/Exactly_solvable "完全可以解决"),并由表面上的[测地流程](https://en.wikipedia.org/wiki/Geodesic_flow "测地流程")给出。这是[雅克·哈达玛](https://en.wikipedia.org/wiki/Jacques_Hadamard "雅克哈达玛")([Jacques Hadamard)](https://en.wikipedia.org/wiki/Jacques_Hadamard "雅克哈达玛")于1898年提出的有史以来最早研究的[确定性混沌的](https://en.wikipedia.org/wiki/Deterministic_chaos "确定性的混乱")例子。[](https://en.wikipedia.org/wiki/Jacques_Hadamard "雅克哈达玛")
### Artin的台球\[(https://en.wikipedia.org/w/index.php?title=Dynamical_billiards&action=edit§ion=4 "编辑部分:Artin的台球")\]
主要文章:[Artin台球](https://en.wikipedia.org/wiki/Artin_billiard "Artin台球")
Artin的台球考虑了点粒子在恒定负曲率表面上的自由运动,特别是最简单的非紧致[黎曼表面](https://en.wikipedia.org/wiki/Riemann_surface "黎曼表面"),一个具有一个尖点的表面。值得注意的是,它是完全可以解决的,但不仅是[遍历性的,](https://en.wikipedia.org/wiki/Ergodic "遍历")而且是[强烈混合的](https://en.wikipedia.org/wiki/Mixing_(mathematics) "混合(数学)")。这是[Anosov系统的](https://en.wikipedia.org/wiki/Anosov_flow "阿诺索夫流")一个例子。该系统最初由[Emil Artin](https://en.wikipedia.org/wiki/Emil_Artin "埃米尔·阿廷")于1924年研究。
### 分散和半分散台球\[(https://en.wikipedia.org/w/index.php?title=Dynamical_billiards&action=edit§ion=5 "编辑部分:分散和半分散台球")\]
设*M*是无边界的完全光滑黎曼流形,其最大[截面曲率](https://en.wikipedia.org/wiki/Sectional_curvature "截面曲率")不大于*K*且具有[注入半径](https://en.wikipedia.org/wiki/Glossary_of_Riemannian_and_metric_geometry "黎曼和公制几何术语表"){\\ displaystyle \\ rho> 0}![\ rho> 0](https://wikimedia.org/api/rest_v1/media/math/render/svg/11bd697f113e3e1bd7c76f2f441fd102eca99cab)。考虑*n个*测地[凸](https://en.wikipedia.org/wiki/Convex_set "凸集")子集(墙)的集合{\\ displaystyle B\_ {i} \\ subset M}![B_ {i} \子集M.](https://wikimedia.org/api/rest_v1/media/math/render/svg/faa49e0649c817aa0592d405b4661e6a9bec0c83),{\\ displaystyle i = 1,\\ ldots,n}![i = 1,\ ldots,n](https://wikimedia.org/api/rest_v1/media/math/render/svg/a5726d00b79af1b4666a6319c45381579dc85a9a)这样它们的边界就是一个平滑的子流形。让{\\ displaystyle B = M \\(\\ bigcup \_ {i = 1} ^ {n} \\ operatorname {Int}(B\_ {i}))}![{\ displaystyle B = M \(\ bigcup _ {i = 1} ^ {n} \ operatorname {Int}(B_ {i}))}](https://wikimedia.org/api/rest_v1/media/math/render/svg/1b84419355cf3d4e5762d9f22e1654039f694967),哪里{\\ displaystyle \\ operatorname {Int}(B\_ {i})}![{\ displaystyle \ operatorname {Int}(B_ {i})}](https://wikimedia.org/api/rest_v1/media/math/render/svg/b2970b8915b67f19b09f6af9fce919b6381aad90)表示该组的内部{\\ displaystyle B\_ {i}}![双}](https://wikimedia.org/api/rest_v1/media/math/render/svg/82cda0578ec6b48774c541ecb9bee4a90176e62f)。这套{\\ displaystyle B \\ subset M}![B \子集M.](https://wikimedia.org/api/rest_v1/media/math/render/svg/afb75b768aebbf2aa63e09fd3b8a49bcd627e9d6)将被称为台球桌。现在考虑一个粒子在集合*B内*以单位速度在测地线上移动,直到它到达其中一个集合*B*i(这种事件称为碰撞),在那里它根据法则反映“入射角等于反射角“(如果它到达其中一组){\\ displaystyle B\_ {i} \\ cap B\_ {j}}![B_ {i} \ cap B_ {j}](https://wikimedia.org/api/rest_v1/media/math/render/svg/8865e1e4e8499d8a48ad2c3dd3b1b7ba71a3ba78),{\\ displaystyle i \\ neq j}![我是你](https://wikimedia.org/api/rest_v1/media/math/render/svg/d95aeb406bb427ac96806bc00c30c91d31b858be),那个时刻之后没有定义轨迹)。这种动力系统称为**半分散台球**。如果墙壁是严格凸起的,则台球称为**分散**。命名的动机是观察到局部平行的轨迹束在与墙壁的严格凸起部分碰撞后分散,但在与墙壁的平坦部分碰撞后保持局部平行。
分散边界对于台球起着相同的作用,因为负[曲率](https://en.wikipedia.org/wiki/Curvature "曲率")对于[测地线](https://en.wikipedia.org/w/index.php?title=Geodesic_as_Hamiltonian_flow&action=edit&redlink=1 "测地线为哈密顿量流(页面不存在)")流动起作用,导致动力学的指数[不稳定](https://en.wikipedia.org/wiki/Instability "不稳定性")。正是这种分散机制赋予了分散台球最强大的[混乱](https://en.wikipedia.org/wiki/Chaos_theory "混沌理论")特性,正如[Yakov G. Sinai](https://en.wikipedia.org/wiki/Yakov_G._Sinai "雅科夫西奈")所建立的[那样](https://en.wikipedia.org/wiki/Yakov_G._Sinai "雅科夫西奈")。[\[1\]](https://en.wikipedia.org/wiki/Dynamical_billiards#cite_note-1)即,台球是[遍历](https://en.wikipedia.org/wiki/Ergodicity "遍历"),[混合](https://en.wikipedia.org/wiki/Mixing_(mathematics) "混合(数学)"),[伯努利](https://en.wikipedia.org/wiki/Bernoulli_scheme "伯努利计划"),具有正的Kolmogorov-西奈[熵](https://en.wikipedia.org/wiki/Entropy "熵")和[指数衰减](https://en.wikipedia.org/wiki/Exponential_decay "指数衰减")的[相互关系](https://en.wikipedia.org/wiki/Correlations "相关性")。
一般半分散台球的混沌特性并不是很清楚,然而,自1975年以来,一些重要类型的半分散台球,**硬球气体的**一些细节进行了研究(见下一节)。
Dmitry Burago和[Serge Ferleger](https://en.wikipedia.org/w/index.php?title=Serge_Ferleger&action=edit&redlink=1 "Serge Ferleger(页面不存在)")[\[2\]](https://en.wikipedia.org/wiki/Dynamical_billiards#cite_note-2)关于非简并半分散台球碰撞数量的统一估计的一般结果允许建立其[拓扑熵的](https://en.wikipedia.org/wiki/Topological_entropy "拓扑熵")有限性,并且不超过周期轨迹的指数增长。[\[3\]](https://en.wikipedia.org/wiki/Dynamical_billiards#cite_note-3)相比之下,*退化的*半分散台球可能具有无限的拓扑熵。[\[4\]](https://en.wikipedia.org/wiki/Dynamical_billiards#cite_note-4)
### 硬球系统\[(https://en.wikipedia.org/w/index.php?title=Dynamical_billiards&action=edit§ion=6 "编辑部分:硬球系统")\]
### 洛伦兹气\[(https://en.wikipedia.org/w/index.php?title=Dynamical_billiards&action=edit§ion=7 "编辑部分:洛伦兹汽油")\]
[![](https://upload.wikimedia.org/wikipedia/commons/thumb/f/fb/SinaiBilliard.svg/220px-SinaiBilliard.svg.png)](https://en.wikipedia.org/wiki/File:SinaiBilliard.svg)
洛伦兹气体中的轨迹
**洛伦兹气体**表是一个正方形,从中心移开一个圆盘;桌子是平的,没有曲率。台球是通过研究两个相互作用的磁盘在一个正方形内反弹的行为而产生的,它反射了正方形的边界并相互脱离。通过消除质心作为配置变量,两个相互作用的盘的动力学减少到西奈台球的动力学。
[Yakov G. Sinai](https://en.wikipedia.org/wiki/Yakov_G._Sinai "雅科夫西奈")引入了台球作为显示物理热力学性质的相互作用[哈密顿体系的](https://en.wikipedia.org/wiki/Hamiltonian_system "哈密顿体系")一个例子:它所有可能的轨迹都是[遍历的,](https://en.wikipedia.org/wiki/Ergodic "遍历")并且它具有正的[Lyapunov指数](https://en.wikipedia.org/wiki/Lyapunov_exponent "Lyapunov指数")。
西奈在这个模型中取得的巨大成就是为了表明经典的[玻尔兹曼 - 吉布斯合奏](https://en.wikipedia.org/w/index.php?title=Boltzmann%E2%80%93Gibbs_ensemble&action=edit&redlink=1 "Boltzmann-Gibbs合奏(页面不存在)")的[理想气体](https://en.wikipedia.org/wiki/Ideal_gas "理想的气体")基本上是最大混乱的哈达玛台球。
### 布尼莫维奇体育场\[(https://en.wikipedia.org/w/index.php?title=Dynamical_billiards&action=edit§ion=8 "编辑部分:Bunimovich体育场")\]
名为**Bunimovich体育场**的桌子是一个长方形的半圆形,形状称为[体育场](https://en.wikipedia.org/wiki/Stadium_(geometry) "体育场(几何)")。直到[Leonid Bunimovich](https://en.wikipedia.org/wiki/Leonid_Bunimovich "列昂尼德布尼莫维奇")介绍,具有正[Lyapunov指数的](https://en.wikipedia.org/wiki/Lyapunov_exponent "Lyapunov指数")台球被认为需要凸散射,例如西奈台球的圆盘,以产生轨道的指数发散。Bunimovich表明,通过考虑超出凹区域聚焦点的轨道,可以获得指数发散。
### 广义台球\[[编辑](https://en.wikipedia.org/w/index.php?title=Dynamical_billiards&action=edit§ion=9 "编辑部分:广义台球")\]
广义台球(GB)描述了封闭域内质点(粒子)的运动{\\ displaystyle \\ Pi \\,\\ subset \\,\\ mathbb {R} ^ {n}}![{\ displaystyle \ Pi \,\ subset \,\ mathbb {R} ^ {n}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/3cde5fcdfef4659e1d6110462a08ea8f00e6eb39)具有分段平滑的边界{\\ displaystyle \\ Gamma}![\伽玛 ](https://wikimedia.org/api/rest_v1/media/math/render/svg/4cfde86a3f7ec967af9955d0988592f0693d2b19)。在边界上{\\ displaystyle \\ Gamma}![\伽玛 ](https://wikimedia.org/api/rest_v1/media/math/render/svg/4cfde86a3f7ec967af9955d0988592f0693d2b19)当粒子经历广义台球定律的作用时,点的速度被转换。[Lev D. Pustyl'nikov](https://en.wikipedia.org/w/index.php?title=Lev_D._Pustyl%27nikov&action=edit&redlink=1 "Lev D. Pustyl'nikov(页面不存在)")在一般情况下引入了GB[\[5\]](https://en.wikipedia.org/wiki/Dynamical_billiards#cite_note-Pustyln1-5),在这种情况下{\\ displaystyle \\ Pi}![\皮 ](https://wikimedia.org/api/rest_v1/media/math/render/svg/eed3e3db6cc2028a183af948212ed2551d25c954)是一个平行六面体[\[6\]](https://en.wikipedia.org/wiki/Dynamical_billiards#cite_note-Pustyln2-6)与[热力学第二定律](https://en.wikipedia.org/wiki/Second_law_of_thermodynamics "热力学第二定律")的正当性有关。从物理角度来看,GB描述了一种由在容器中移动的有限许多颗粒组成的气体,同时容器壁加热或冷却。概括的本质如下。当粒子撞击边界{\\ displaystyle \\ Gamma}![\伽玛 ](https://wikimedia.org/api/rest_v1/media/math/render/svg/4cfde86a3f7ec967af9955d0988592f0693d2b19),它的速度在给定函数的帮助下变换{\\ displaystyle f(\\ gamma,\\,t)}![{\ displaystyle f(\ gamma,\,t)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/2b1acbc3f9bb243af86ad5ef90b03185552a3e38),在直接产品上定义{\\ displaystyle \\ Gamma \\,\\ times \\,\\ mathbb {R} ^ {1}}![{\ displaystyle \ Gamma \,\ times \,\ mathbb {R} ^ {1}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/3edce05d4794daac2280d9ef9799eaa41aec4452)(哪里{\\ displaystyle \\ mathbb {R} ^ {1}}![{\ mathbb {R}} ^ {1}](https://wikimedia.org/api/rest_v1/media/math/render/svg/ec2e282911e406fc800fb1095093667d66f18c7f)是真正的路线,{\\ displaystyle \\ gamma \\,\\ in \\,\\ Gamma}![{\ displaystyle \ gamma \,\ in \,\ Gamma}](https://wikimedia.org/api/rest_v1/media/math/render/svg/be3038a16c996ab7edf4227dbcf1a0f45067c3ce)是边界的一个点{\\ displaystyle t \\,\\ in \\,\\ mathbb {R} ^ {1}}![{\ displaystyle t \,\ in \,\ mathbb {R} ^ {1}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/49f0cb306950236da82aa4d227bd64ac8fb59831)根据以下法律,是时间)。假设粒子的轨迹随着速度移动{\\ displaystyle v}![v](https://wikimedia.org/api/rest_v1/media/math/render/svg/e07b00e7fc0847fbd16391c778d65bc25c452597),相交{\\ displaystyle \\ Gamma}![\伽玛 ](https://wikimedia.org/api/rest_v1/media/math/render/svg/4cfde86a3f7ec967af9955d0988592f0693d2b19)在这一点上{\\ displaystyle \\ gamma \\,\\ in \\,\\ Gamma}![{\ displaystyle \ gamma \,\ in \,\ Gamma}](https://wikimedia.org/api/rest_v1/media/math/render/svg/be3038a16c996ab7edf4227dbcf1a0f45067c3ce)在时间{\\ displaystyle t ^ {\*}}![吨^ {*}](https://wikimedia.org/api/rest_v1/media/math/render/svg/25c73524c328c099fbfcff931451272a61e74fb8)。然后在时间{\\ displaystyle t ^ {\*}}![吨^ {*}](https://wikimedia.org/api/rest_v1/media/math/render/svg/25c73524c328c099fbfcff931451272a61e74fb8)粒子获得速度{\\ displaystyle v ^ {\*}}![v ^ {*}](https://wikimedia.org/api/rest_v1/media/math/render/svg/e76cf89e141b175612c63e8a79bbe6f6b951d3a8)就好像它从无限重的飞机上进行弹性推动一样{\\ displaystyle \\ Gamma ^ {\*}}![\ Gamma ^ {*}](https://wikimedia.org/api/rest_v1/media/math/render/svg/8386fa4ff791063e5561d2dadf5d3ae5b5c6e938),与之相切{\\ displaystyle \\ Gamma}![\伽玛 ](https://wikimedia.org/api/rest_v1/media/math/render/svg/4cfde86a3f7ec967af9955d0988592f0693d2b19)在这一点上{\\ displaystyle \\ gamma}![\伽玛 ](https://wikimedia.org/api/rest_v1/media/math/render/svg/a223c880b0ce3da8f64ee33c4f0010beee400b1a),及时{\\ displaystyle t ^ {\*}}![吨^ {*}](https://wikimedia.org/api/rest_v1/media/math/render/svg/25c73524c328c099fbfcff931451272a61e74fb8)沿着法线移动到{\\ displaystyle \\ Gamma}![\伽玛 ](https://wikimedia.org/api/rest_v1/media/math/render/svg/4cfde86a3f7ec967af9955d0988592f0693d2b19)在{\\ displaystyle \\ gamma}![\伽玛 ](https://wikimedia.org/api/rest_v1/media/math/render/svg/a223c880b0ce3da8f64ee33c4f0010beee400b1a)随着速度{\\ displaystyle \\ textstyle {\\ frac {\\ partial f} {\\ partial t}}(\\ gamma,\\,t ^ {\*})}![{\ displaystyle \ textstyle {\ frac {\ partial f} {\ partial t}}(\ gamma,\,t ^ {*})}](https://wikimedia.org/api/rest_v1/media/math/render/svg/74c3f8b8ecdb6c651e62145611d92a6f873dbddb)。我们强调边界本身的*位置*是固定的,而它对粒子的作用是通过函数定义的{\\ displaystyle f}![F](https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61)。
我们采取飞机运动的正向{\\ displaystyle \\ Gamma ^ {\*}}![\ Gamma ^ {*}](https://wikimedia.org/api/rest_v1/media/math/render/svg/8386fa4ff791063e5561d2dadf5d3ae5b5c6e938)是对*内部*的{\\ displaystyle \\ Pi}![\皮 ](https://wikimedia.org/api/rest_v1/media/math/render/svg/eed3e3db6cc2028a183af948212ed2551d25c954)。因此,如果衍生品{\\ displaystyle \\ textstyle {\\ frac {\\ partial f} {\\ partial t}}(\\ gamma,\\,t)\\;> \\; 0}![{\ displaystyle \ textstyle {\ frac {\ partial f} {\ partial t}}(\ gamma,\,t)\;> \; 0}](https://wikimedia.org/api/rest_v1/media/math/render/svg/1c4243465628b6e14659b3c1483b0c73d5edc139),然后粒子在撞击后加速。
如果速度{\\ displaystyle v ^ {\*}}![v ^ {*}](https://wikimedia.org/api/rest_v1/media/math/render/svg/e76cf89e141b175612c63e8a79bbe6f6b951d3a8)作为上述反射定律的结果,由粒子获得的,被引导到域的内部{\\ displaystyle \\ Pi}![\皮 ](https://wikimedia.org/api/rest_v1/media/math/render/svg/eed3e3db6cc2028a183af948212ed2551d25c954),然后粒子将离开边界并继续移动{\\ displaystyle \\ Pi}![\皮 ](https://wikimedia.org/api/rest_v1/media/math/render/svg/eed3e3db6cc2028a183af948212ed2551d25c954)直到下一次碰撞{\\ displaystyle \\ Gamma}![\伽玛 ](https://wikimedia.org/api/rest_v1/media/math/render/svg/4cfde86a3f7ec967af9955d0988592f0693d2b19)。如果速度{\\ displaystyle v ^ {\*}}![v ^ {*}](https://wikimedia.org/api/rest_v1/media/math/render/svg/e76cf89e141b175612c63e8a79bbe6f6b951d3a8)是针对外面的{\\ displaystyle \\ Pi}![\皮 ](https://wikimedia.org/api/rest_v1/media/math/render/svg/eed3e3db6cc2028a183af948212ed2551d25c954)然后粒子继续存在{\\ displaystyle \\ Gamma}![\伽玛 ](https://wikimedia.org/api/rest_v1/media/math/render/svg/4cfde86a3f7ec967af9955d0988592f0693d2b19)在这一点上{\\ displaystyle \\ gamma}![\伽玛 ](https://wikimedia.org/api/rest_v1/media/math/render/svg/a223c880b0ce3da8f64ee33c4f0010beee400b1a)直到某个时间{\\ displaystyle {\\ tilde {t}} \\;> \\; t ^ {\*}}![{\ displaystyle {\ tilde {t}} \;> \; t ^ {*}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/a88cafb6a216bd3d21754abc01418ad2f54a9726)与边界的相互作用将迫使粒子离开它。
如果功能{\\ displaystyle f(\\ gamma,\\,t)}![{\ displaystyle f(\ gamma,\,t)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/2b1acbc3f9bb243af86ad5ef90b03185552a3e38)不依赖于时间{\\ displaystyle t}![Ť](https://wikimedia.org/api/rest_v1/media/math/render/svg/65658b7b223af9e1acc877d848888ecdb4466560);即{\\ displaystyle \\ textstyle {\\ frac {\\ partial f} {\\ partial t}} \\; = \\; 0}![{\ displaystyle \ textstyle {\ frac {\ partial f} {\ partial t}} \; = \; 0}](https://wikimedia.org/api/rest_v1/media/math/render/svg/d07fa821830992bfe573b66219ed711fd53061df),广义台球与经典台球相吻合。
这种广义反射定律非常自然。首先,它反映了一个明显的事实,即带有气体的容器壁是不动的。其次,墙壁对粒子的作用仍然是经典的弹性推力。从本质上讲,我们考虑以给定的速度无限移动边界。
它被认为是边界的反射{\\ displaystyle \\ Gamma}![\伽玛 ](https://wikimedia.org/api/rest_v1/media/math/render/svg/4cfde86a3f7ec967af9955d0988592f0693d2b19)在经典力学(牛顿案)和相对论(相对论案例)的框架内。
主要结果:在牛顿的情况下,粒子的能量是有界的,吉布斯熵是常数,[\[6\]](https://en.wikipedia.org/wiki/Dynamical_billiards#cite_note-Pustyln2-6)[\[7\]](https://en.wikipedia.org/wiki/Dynamical_billiards#cite_note-Pustyln3-7)[\[8\]](https://en.wikipedia.org/wiki/Dynamical_billiards#cite_note-Pustyln7-8)(在注释中)和相对论的情况下粒子的能量,吉布斯熵,熵与相对于相位体积增长到无穷大,[\[6\]](https://en.wikipedia.org/wiki/Dynamical_billiards#cite_note-Pustyln2-6)[\[8\]](https://en.wikipedia.org/wiki/Dynamical_billiards#cite_note-Pustyln7-8)(在注释中),对广义台球的引用。
## 量子混沌\[[编辑](https://en.wikipedia.org/w/index.php?title=Dynamical_billiards&action=edit§ion=10 "编辑部分:量子混乱")\]
台球的量子版本很容易以多种方式进行研究。如上所述,台球的经典哈密顿量被替换为静态[薛定谔方程](https://en.wikipedia.org/wiki/Schr%C3%B6dinger_equation "薛定谔方程"){\\ displaystyle H \\ psi \\; = \\; E \\ psi}![{\ displaystyle H \ psi \; = \; E \ psi}](https://wikimedia.org/api/rest_v1/media/math/render/svg/36edf8111e80e2ee1729954626ee400959439233)或者更确切地说,
{\\ displaystyle - {\\ frac {\\ hbar ^ {2}} {2m}} \\ nabla ^ {2} \\ psi \_ {n}(q)= E\_ {n} \\ psi \_ {n}(q)}![- {\ frac {\ hbar ^ {2}} {2m}} \ nabla ^ {2} \ psi _ {n}(q)= E_ {n} \ psi _ {n}(q)](https://wikimedia.org/api/rest_v1/media/math/render/svg/900161da7d76ebcb4d33004c0e8a3a03b06058c6)
哪里{\\ displaystyle \\ nabla ^ {2}}![\ nabla ^ {2}](https://wikimedia.org/api/rest_v1/media/math/render/svg/f4be87ad083e5ead48d92b0c82f2d4e719cb34a6)是[拉普拉斯人](https://en.wikipedia.org/wiki/Laplacian "拉普拉斯")。在该地区之外的无限潜力{\\ displaystyle \\ Omega}![\欧米茄 ](https://wikimedia.org/api/rest_v1/media/math/render/svg/24b0d5ca6f381068d756f6337c08e0af9d1eeb6f)但其中的零转换为[Dirichlet边界条件](https://en.wikipedia.org/wiki/Dirichlet_boundary_conditions "Dirichlet边界条件"):
{\\ displaystyle \\ psi \_ {n}(q)= 0 \\ quad {\\ mbox {for}} \\ quad q \\ notin \\ Omega}![\ psi _ {n}(q)= 0 \ quad {\ mbox {for}} \ quad q \ notin \ Omega ](https://wikimedia.org/api/rest_v1/media/math/render/svg/68b5396280953751ce7e28f699548ef1e4470970)
像往常一样,波函数被认为是[正交的](https://en.wikipedia.org/wiki/Orthonormal "正交"):
{\\ displaystyle \\ int \_ {\\ Omega} {\\ overline {\\ psi \_ {m}}}(q)\\ psi \_ {n}(q)\\,dq = \\ delta \_ {mn}}![\ int _ {\ Omega} {\ overline {\ psi _ {m}}}(q)\ psi _ {n}(q)\,dq = \ delta _ {mn}](https://wikimedia.org/api/rest_v1/media/math/render/svg/6ea8de59cd026adcf05366e0660b6f27f54103dd)
奇怪的是,自由场Schrödinger方程与[亥姆霍兹方程](https://en.wikipedia.org/wiki/Helmholtz_equation "亥姆霍兹方程")相同,
{\\ displaystyle \\ left(\\ nabla ^ {2} + k ^ {2} \\ right)\\ psi = 0}![\ left(\ nabla ^ {2} + k ^ {2} \ right)\ psi = 0](https://wikimedia.org/api/rest_v1/media/math/render/svg/07b56f07c8d4bb98d03e228d440dc25b79d7986e)
同
{\\ displaystyle k ^ {2} = {\\ frac {1} {\\ hbar ^ {2}}} 2mE\_ {n}}![k ^ {2} = {\ frac {1} {\ hbar ^ {2}}} 2mE_ {n}](https://wikimedia.org/api/rest_v1/media/math/render/svg/01f312f33d36c45c89b1df656aa75a4239f7f99e)
这意味着二维和三维量子台球可以通过给定形状的[雷达腔](https://en.wikipedia.org/wiki/Radar_cavity "雷达腔")的经典共振模式来建模,从而为实验验证打开了大门。(雷达腔模式的研究必须限于[横向磁](https://en.wikipedia.org/wiki/Transverse_magnetic "横向磁场")(TM)模式,因为这些模式遵循Dirichlet边界条件)。
半经典极限对应于{\\ displaystyle \\ hbar \\; \\ to \\; 0}![{\ displaystyle \ hbar \; \ to \; 0}](https://wikimedia.org/api/rest_v1/media/math/render/svg/46288338b014a287690c6a0a3c4b5d5f47c9c2e2)可以看出相当于{\\ displaystyle m \\; \\ to \\; \\ infty}![{\ displaystyle m \; \ to \; \ infty}](https://wikimedia.org/api/rest_v1/media/math/render/svg/350dc7d984a686757f48209454beba911d214c65),质量增加,使其表现经典。
作为一般性陈述,可以说每当经典运动方程是[可积的](https://en.wikipedia.org/wiki/Integrable "积")(例如矩形或圆形台球桌),那么台球的量子力学版本就完全可以解决。当经典系统混沌时,量子系统通常不能完全解决,并且在量化和评估方面存在许多困难。混沌量子系统的一般研究称为[量子混沌](https://en.wikipedia.org/wiki/Quantum_chaos "量子混沌")。
椭圆形桌子上留下疤痕的一个特别引人注目的例子是观察所谓的[量子海市蜃楼](https://en.wikipedia.org/wiki/Quantum_mirage "量子海市蜃楼")。
## 应用\[[编辑](https://en.wikipedia.org/w/index.php?title=Dynamical_billiards&action=edit§ion=11 "编辑部分:应用程序")\]
量子台球理论最实际应用与[双包层光纤有关](https://en.wikipedia.org/wiki/Double-clad_fiber "双包层光纤")。在这种[光纤激光器中](https://en.wikipedia.org/wiki/Fiber_laser "光纤激光器"),具有低[数值孔径](https://en.wikipedia.org/wiki/Numerical_aperture "数值孔径")的小芯限制了信号,宽包层限制了多模泵。在[近轴近似中](https://en.wikipedia.org/wiki/Paraxial_approximation "近轴近似"),包层中泵浦的复杂场在量子台球中表现得像波函数。具有瘢痕形成的包层的模式可以避免芯,并且对称配置增强了这种效果。混沌纤维[\[9\]](https://en.wikipedia.org/wiki/Dynamical_billiards#cite_note-Doya-9)提供良好的耦合;在第一近似中,这种光纤可以用与理想化台球相同的方程来描述。具有圆形对称性的纤维中的耦合特别差,而具有靠近螺旋块的核心的螺旋形纤维显示出良好的耦合性质。小螺旋变形迫使所有疤痕与核心耦合。[\[10\]](https://en.wikipedia.org/wiki/Dynamical_billiards#cite_note-diri-10)在微波炉腔体的体育场形状被选择成使得微波在空腔的整个区域均匀地分布和食品将得到均匀地加热。\[*[引证需要](https://en.wikipedia.org/wiki/Wikipedia:Citation_needed "维基百科:需要引文")*\]
## 另见\[[编辑](https://en.wikipedia.org/w/index.php?title=Dynamical_billiards&action=edit§ion=12 "编辑部分:另见")\]
* [Fermi-Ulam模型](https://en.wikipedia.org/wiki/Fermi%E2%80%93Ulam_model "Fermi-Ulam模型")(带有摆动墙的台球)
* [Lubachevsky-Stillinger](https://en.wikipedia.org/wiki/Lubachevsky-Stillinger_algorithm "Lubachevsky-Stillinger算法")压缩[算法](https://en.wikipedia.org/wiki/Lubachevsky-Stillinger_algorithm "Lubachevsky-Stillinger算法")模拟硬球不仅与边界碰撞,而且在尺寸增大时也会相互碰撞[\[11\]](https://en.wikipedia.org/wiki/Dynamical_billiards#cite_note-11)
## 笔记\[[编辑](https://en.wikipedia.org/w/index.php?title=Dynamical_billiards&action=edit§ion=13 "编辑部分:备注")\]
1. **[^](https://en.wikipedia.org/wiki/Dynamical_billiards#cite_ref-1 "跳起来")**[http://www.mathunion.org/ICM/ICM1990.1/Main/icm1990.1.0249.0260.ocr.pdf](http://www.mathunion.org/ICM/ICM1990.1/Main/icm1990.1.0249.0260.ocr.pdf)
2. **[^](https://en.wikipedia.org/wiki/Dynamical_billiards#cite_ref-2 "跳起来")**Burago,D。;Ferleger,S。;Kononenko,A。(1998年1月1日)。“对半分散台球碰撞次数的统一估计”。*数学年鉴*。**147**(3):695-708。[doi](https://en.wikipedia.org/wiki/Digital_object_identifier "数字对象标识符"):[10.2307 / 120962](https://doi.org/10.2307%2F120962)。[JSTOR](https://en.wikipedia.org/wiki/JSTOR "JSTOR") [120962](https://www.jstor.org/stable/120962)。
3. **[^](https://en.wikipedia.org/wiki/Dynamical_billiards#cite_ref-3 "跳起来")**Burago,D。;Ferleger,S。(1997年5月26日)。[“半分散台球的拓扑熵”](https://www.researchgate.net/publication/2756974_Topological_Entropy_Of_Semi-Dispersing_Billiards)。*遍历理论与动力系统*。**18**(4):791。[DOI](https://en.wikipedia.org/wiki/Digital_object_identifier "数字对象标识符"):[10.1017 / S0143385798108246](https://doi.org/10.1017%2FS0143385798108246)。
4. **[^](https://en.wikipedia.org/wiki/Dynamical_billiards#cite_ref-4 "跳起来")**Burago,D。(2006年2月1日)。[“无限拓扑熵的半分散台球”](http://journals.cambridge.org/article_S0143385704001002)。*遍历理论与动力系统*。**26**(1):45-52。[doi](https://en.wikipedia.org/wiki/Digital_object_identifier "数字对象标识符"):[10.1017 / S0143385704001002](https://doi.org/10.1017%2FS0143385704001002)\- 通过剑桥期刊在线。
5. **[^](https://en.wikipedia.org/wiki/Dynamical_billiards#cite_ref-Pustyln1_5-0 "跳起来")**Pustyl'nikov,LD(1999)。“熵增法则和广义台球”。*[俄罗斯数学调查](https://en.wikipedia.org/wiki/Russian_Mathematical_Surveys "俄罗斯数学调查")*。**54**(3):650-651。[Bibcode](https://en.wikipedia.org/wiki/Bibcode "Bibcode"):[1999RuMaS..54..650P](http://adsabs.harvard.edu/abs/1999RuMaS..54..650P)。[doi](https://en.wikipedia.org/wiki/Digital_object_identifier "数字对象标识符"):[10.1070 / rm1999v054n03abeh000168](https://doi.org/10.1070%2Frm1999v054n03abeh000168)。
6. ^[跳到:***a***](https://en.wikipedia.org/wiki/Dynamical_billiards#cite_ref-Pustyln2_6-0)[***b***](https://en.wikipedia.org/wiki/Dynamical_billiards#cite_ref-Pustyln2_6-1)[***c***](https://en.wikipedia.org/wiki/Dynamical_billiards#cite_ref-Pustyln2_6-2)Pustyl'nikov,LD(1995)。“Poincaré模型,来自力学的热力学第二定律的rogorous证明,以及Fermi加速机制”。*[俄罗斯数学调查](https://en.wikipedia.org/wiki/Russian_Mathematical_Surveys "俄罗斯数学调查")*。**50**(1):145-189。[Bibcode](https://en.wikipedia.org/wiki/Bibcode "Bibcode"):[1995RuMaS..50..145P](http://adsabs.harvard.edu/abs/1995RuMaS..50..145P)。[doi](https://en.wikipedia.org/wiki/Digital_object_identifier "数字对象标识符"):[10.1070 / rm1995v050n01abeh001663](https://doi.org/10.1070%2Frm1995v050n01abeh001663)。
7. **[^](https://en.wikipedia.org/wiki/Dynamical_billiards#cite_ref-Pustyln3_7-0 "跳起来")**Pustyl'nikov,LD(2005)。“球中的广义牛顿周期台球”。*UMN*。**60**(2):171-172。[俄语数学调查中的](https://en.wikipedia.org/wiki/Russian_Mathematical_Surveys "俄罗斯数学调查")英文翻译,60(2),pp.365-366(2005)。
8. ^[跳到:***a***](https://en.wikipedia.org/wiki/Dynamical_billiards#cite_ref-Pustyln7_8-0)[***d***](https://en.wikipedia.org/wiki/Dynamical_billiards#cite_ref-Pustyln7_8-1)Deryabin,Mikhail V。Pustyl'nikov,Lev D.(2007)。“非平衡气体和广义台球”。*统计物理学报*。**126**(1):117-132。[Bibcode](https://en.wikipedia.org/wiki/Bibcode "Bibcode"):[2007JSP ... 126..117D](http://adsabs.harvard.edu/abs/2007JSP...126..117D)。[doi](https://en.wikipedia.org/wiki/Digital_object_identifier "数字对象标识符"):[10.1007 / s10955-006-9250-4](https://doi.org/10.1007%2Fs10955-006-9250-4)。
9. **[^](https://en.wikipedia.org/wiki/Dynamical_billiards#cite_ref-Doya_9-0 "跳起来")**Leproux,P。;S. Fevrier;V. Doya;P. Roy;D. Pagnoux(2003年)。[“利用泵的混沌传播建模和优化双包层光纤放大器”](http://www.ingentaconnect.com/content/ap/of/2001/00000007/00000004/art00361)。*[光纤技术](https://en.wikipedia.org/wiki/Optical_Fiber_Technology "光纤技术")*。**7**(4):324-339。[Bibcode](https://en.wikipedia.org/wiki/Bibcode "Bibcode"):[2001OptFT ... 7..324L](http://adsabs.harvard.edu/abs/2001OptFT...7..324L)。[doi](https://en.wikipedia.org/wiki/Digital_object_identifier "数字对象标识符"):[10.1006 / ofte.2001.0361](https://doi.org/10.1006%2Fofte.2001.0361)。
10. **[^](https://en.wikipedia.org/wiki/Dynamical_billiards#cite_ref-diri_10-0 "跳起来")**Kouznetsov,D。;Moloney,JV(2004)。[“Dirichlet Laplacian模式的边界行为”](http://www.metapress.com/content/be0lua88cwybywnl/?p=5464d03ba7e7440f9827207df673c804&pi=6)。*[现代光学杂志](https://en.wikipedia.org/wiki/Journal_of_Modern_Optics "现代光学杂志")*。**51**(13):1955-1962。[Bibcode](https://en.wikipedia.org/wiki/Bibcode "Bibcode"):[2004JMOp ... 51.1955K](http://adsabs.harvard.edu/abs/2004JMOp...51.1955K)。[doi](https://en.wikipedia.org/wiki/Digital_object_identifier "数字对象标识符"):[10.1080 / 09500340408232504](https://doi.org/10.1080%2F09500340408232504)。\[*[永久死链接](https://en.wikipedia.org/wiki/Wikipedia:Link_rot "维基百科:链接腐烂")*\]
11. **[^](https://en.wikipedia.org/wiki/Dynamical_billiards#cite_ref-11 "跳起来")**BD Lubachevsky和FH Stillinger,随机磁盘包装的几何特性,J。Statistical Physics 60(1990),561-583[http://www.princeton.edu/~fhs/geodisk/geodisk.pdf](http://www.princeton.edu/~fhs/geodisk/geodisk.pdf)
## 参考文献\[[编辑](https://en.wikipedia.org/w/index.php?title=Dynamical_billiards&action=edit§ion=14 "编辑部分:参考")\]
### 西奈的台球\[[编辑](https://en.wikipedia.org/w/index.php?title=Dynamical_billiards&action=edit§ion=15 "编辑部分:西奈的台球")\]
* 西奈,雅。G.(1963)。“\[关于动态统计力学系统的遍历假设的基础\]”。*[Doklady Akademii Nauk SSSR](https://en.wikipedia.org/wiki/Doklady_Akademii_Nauk_SSSR "Doklady Akademii Nauk SSSR")*(俄文)。**153**(6):1261-1264。(英语,*SOV。数学Dokl。***4**(1963)第1818至1822年)。
* 雅。G. Sinai,“具有弹性反射的动力系统”,*[俄罗斯数学调查](https://en.wikipedia.org/wiki/Russian_Mathematical_Surveys "俄罗斯数学调查")*,**25**,(1970)第137-191页。
* VI Arnold和A.*Avez,Théorieergodiquedessystèmspynamiques*,(1967),Gauthier-Villars,Paris。(英文版:Benjamin-Cummings,Reading,Mass.1968)。*(为西奈的台球提供讨论和参考。)*
* D. Heitmann,JP Kotthaus,“Quantum Dot Arrays的光谱学”,*Physics Today*(1993),第56-63页。*(回顾了西奈台球的量子版本的实验测试,实现了硅片上的纳米级(介观)结构。)*
* S. Sridhar和WT Lu,“[Sinai Billiards,Ruelle Zeta-functions和Ruelle Resonances:Microwave Experiments](https://link.springer.com/content/pdf/10.1023/A:1019714808787.pdf)”,(2002)*Journal of Statistical Physics*,Vol。**108**第5/6号,第755-766页。
* Linas Vepstas,*[Sinai's Billiards](http://www.linas.org/art-gallery/billiards/billiards.html)*,(2001)。*(在三维空间中提供西奈台球的光线跟踪图像。这些图像提供了系统强烈遍历性的图形直观演示。)*
* N. Chernov和R. Markarian,“Chaotic Billiards”,2006,数学调查和专着127号,AMS。
### 奇怪的台球\[[编辑](https://en.wikipedia.org/w/index.php?title=Dynamical_billiards&action=edit§ion=16 "编辑部分:奇怪的台球")\]
* T.Schürmann和I. Hoffmann,*n-simplexes中奇怪台球的熵。*J. Phys。A28,第5033页,1995年.PDF-[文件](https://arxiv.org/abs/nlin/0208048)
### 布尼莫维奇体育场\[[编辑](https://en.wikipedia.org/w/index.php?title=Dynamical_billiards&action=edit§ion=17 "编辑部分:Bunimovich体育场")\]
* LABunimovich(1979)。“论无处分散台球的遍历性”。*Commun Math Phys*。**65**(3):295-312。[Bibcode](https://en.wikipedia.org/wiki/Bibcode "Bibcode"):[1979CMaPh..65..295B](http://adsabs.harvard.edu/abs/1979CMaPh..65..295B)。[doi](https://en.wikipedia.org/wiki/Digital_object_identifier "数字对象标识符"):[10.1007 / BF01197884](https://doi.org/10.1007%2FBF01197884)。
* LABunimovich&Ya。G.西奈(1980)。“分散台球的马尔可夫分区”。*Commun Math Phys*。**78**(2):247-280。[Bibcode](https://en.wikipedia.org/wiki/Bibcode "Bibcode"):[1980CMaPh..78..247B](http://adsabs.harvard.edu/abs/1980CMaPh..78..247B)。[doi](https://en.wikipedia.org/wiki/Digital_object_identifier "数字对象标识符"):[10.1007 / bf01942372](https://doi.org/10.1007%2Fbf01942372)。
* [Flash动画说明混乱的Bunimovich体育场](http://www.upscale.utoronto.ca/GeneralInterest/Harrison/Flash/Chaos/Bunimovich/Bunimovich.html)
### 广义台球\[[编辑](https://en.wikipedia.org/w/index.php?title=Dynamical_billiards&action=edit§ion=18 "编辑部分:广义台球")\]
* MV Deryabin和LD Pustyl'nikov,“广义相对论台球”,*Reg。和混乱的Dyn。*8(3),pp.283-296(2003)。
* MV Deryabin和LD Pustyl'nikov,“关于外力场中的广义相对论台球”,*数学物理学中的字母*,63(3),第195-207页(2003)。
* MV Deryabin和LD Pustyl'nikov,“广义相对论台球中的指数吸引子”,*Comm。数学。物理学。*248(3),pp.527-552(2004)。
## 外部链接\[[编辑](https://en.wikipedia.org/w/index.php?title=Dynamical_billiards&action=edit§ion=19 "编辑部分:外部链接")\]
* [魏斯坦,埃里克W.](https://en.wikipedia.org/wiki/Eric_W._Weisstein "Eric W. Weisstein")[“台球”](http://mathworld.wolfram.com/Billiards.html)。*[MathWorld](https://en.wikipedia.org/wiki/MathWorld "MathWorld")*。
* [西奈台球的模拟](https://archive.is/20121223235637/http://xweb.geos.ed.ac.uk/~stephan/mod_SinaiBilliard.en.html)(Stephan Matthiesen)
| 隐藏
* [v](https://en.wikipedia.org/wiki/Template:Chaos_theory "模板:混沌理论")
* [Ť](https://en.wikipedia.org/wiki/Template_talk:Chaos_theory "模板谈话:混沌理论")
* [Ë](https://en.wikipedia.org/w/index.php?title=Template:Chaos_theory&action=edit)
[混沌理论](https://en.wikipedia.org/wiki/Chaos_theory "混沌理论")
|
| --- |
| 混沌理论 |
* [Anosov微分同胚](https://en.wikipedia.org/wiki/Anosov_diffeomorphism "Anosov微分同胚")
* [分岔理论](https://en.wikipedia.org/wiki/Bifurcation_theory "分岔理论")
* [蝴蝶效应](https://en.wikipedia.org/wiki/Butterfly_effect "蝴蝶效应")
* [组织发展中的混沌理论](https://en.wikipedia.org/wiki/Chaos_theory_in_organizational_development "组织发展中的混沌理论")
* [复杂](https://en.wikipedia.org/wiki/Complexity "复杂")
* [控制混乱](https://en.wikipedia.org/wiki/Control_of_chaos "控制混乱")
* [动力系统](https://en.wikipedia.org/wiki/Dynamical_system "动力系统")
* [混乱的边缘](https://en.wikipedia.org/wiki/Edge_of_chaos "混乱的边缘")
* [分形](https://en.wikipedia.org/wiki/Fractal "分形")
* [可预测性](https://en.wikipedia.org/wiki/Predictability "可预测性")
* [量子混沌](https://en.wikipedia.org/wiki/Quantum_chaos "量子混沌")
* [圣达菲研究所](https://en.wikipedia.org/wiki/Santa_Fe_Institute "圣达菲研究所")
* [混乱的同步](https://en.wikipedia.org/wiki/Synchronization_of_chaos "混乱的同步")
* [意想不到的后果](https://en.wikipedia.org/wiki/Unintended_consequences "意想不到的后果")
|
[![圆锥形纺织壳](https://upload.wikimedia.org/wikipedia/commons/thumb/a/ae/C%C3%B4ne_textileII.png/60px-C%C3%B4ne_textileII.png)](https://en.wikipedia.org/wiki/File:C%C3%B4ne_textileII.png "圆锥形纺织壳")
[![圆形地图与黑色阿诺德语](https://upload.wikimedia.org/wikipedia/commons/thumb/a/a5/Circle_map_bifurcation.jpeg/60px-Circle_map_bifurcation.jpeg)](https://en.wikipedia.org/wiki/File:Circle_map_bifurcation.jpeg "圆形地图与黑色阿诺德语")
|
| [混沌地图](https://en.wikipedia.org/wiki/Chaos_theory "混沌理论")
([列表](https://en.wikipedia.org/wiki/List_of_chaotic_maps "混乱地图列表")) |
* [阿诺德的舌头](https://en.wikipedia.org/wiki/Arnold_tongue "阿诺德的舌头")
* [阿诺德的猫图](https://en.wikipedia.org/wiki/Arnold%27s_cat_map "阿诺德的猫图")
* [贝克的地图](https://en.wikipedia.org/wiki/Baker%27s_map "贝克的地图")
* [复杂的二次映射](https://en.wikipedia.org/wiki/Complex_quadratic_polynomial "复二次多项式")
* [复杂的平方图](https://en.wikipedia.org/wiki/Complex_squaring_map "复杂的平方图")
* [耦合图格](https://en.wikipedia.org/wiki/Coupled_map_lattice "耦合图格")
* [双摆](https://en.wikipedia.org/wiki/Double_pendulum "双摆")
* [双滚动吸引器](https://en.wikipedia.org/wiki/Double_scroll_attractor "双滚动吸引器")
* [达芙方程](https://en.wikipedia.org/wiki/Duffing_equation "达芙方程")
* [达芙地图](https://en.wikipedia.org/wiki/Duffing_map "达芙地图")
* [二元变换](https://en.wikipedia.org/wiki/Dyadic_transformation "二元变换")
* 动态台球
* [外](https://en.wikipedia.org/wiki/Outer_billiard "外面的台球")
* [指数图](https://en.wikipedia.org/wiki/Exponential_map_(discrete_dynamical_systems) "指数图(离散动力系统)")
* [高斯地图](https://en.wikipedia.org/wiki/Gauss_iterated_map "高斯迭代地图")
* [Gingerbreadman地图](https://en.wikipedia.org/wiki/Gingerbreadman_map "Gingerbreadman地图")
* [Hénon地图](https://en.wikipedia.org/wiki/H%C3%A9non_map "Hénon地图")
* [马蹄形图](https://en.wikipedia.org/wiki/Horseshoe_map "马蹄形图")
* [池田地图](https://en.wikipedia.org/wiki/Ikeda_map "池田地图")
* [区间交换地图](https://en.wikipedia.org/wiki/Interval_exchange_transformation "区间交换转换")
* [Kaplan-Yorke地图](https://en.wikipedia.org/wiki/Kaplan%E2%80%93Yorke_map "Kaplan-Yorke地图")
* [物流地图](https://en.wikipedia.org/wiki/Logistic_map "物流地图")
* [洛伦兹体系](https://en.wikipedia.org/wiki/Lorenz_system "洛伦兹体系")
* [多卷吸引子](https://en.wikipedia.org/wiki/Multiscroll_attractor "多卷吸引子")
* [Rabinovich-Fabrikant方程](https://en.wikipedia.org/wiki/Rabinovich%E2%80%93Fabrikant_equations "Rabinovich-Fabrikant方程")
* [Rössler吸引子](https://en.wikipedia.org/wiki/R%C3%B6ssler_attractor "Rössler吸引子")
* [标准地图](https://en.wikipedia.org/wiki/Standard_map "标准地图")
* [摇摆阿特伍德的机器](https://en.wikipedia.org/wiki/Swinging_Atwood%27s_machine "摇摆阿特伍德的机器")
* [帐篷地图](https://en.wikipedia.org/wiki/Tent_map "帐篷地图")
* [Tinkerbell地图](https://en.wikipedia.org/wiki/Tinkerbell_map "Tinkerbell地图")
* [范德尔波振荡器](https://en.wikipedia.org/wiki/Van_der_Pol_oscillator "范德尔波振荡器")
* [Zaslavskii地图](https://en.wikipedia.org/wiki/Zaslavskii_map "Zaslavskii地图")
|
| 混沌系统 |
* [弹跳球动力学](https://en.wikipedia.org/wiki/Bouncing_ball_dynamics "弹跳球动力学")
* [蔡的电路](https://en.wikipedia.org/wiki/Chua%27s_circuit "蔡的电路")
* [经济泡沫](https://en.wikipedia.org/wiki/Economic_bubble "经济泡沫")
* [FPUT问题](https://en.wikipedia.org/wiki/Fermi%E2%80%93Pasta%E2%80%93Ulam%E2%80%93Tsingou_problem "Fermi-Pasta-Ulam-Tsingou问题")
* [倾斜-A-旋涡](https://en.wikipedia.org/wiki/Tilt-A-Whirl "倾斜-A-旋涡")
|
| 混沌理论家 |
* [迈克尔贝瑞](https://en.wikipedia.org/wiki/Michael_Berry_(physicist) "迈克尔贝瑞(物理学家)")
* [玛丽卡特赖特](https://en.wikipedia.org/wiki/Mary_Cartwright "玛丽卡特赖特")
* [Leon O. Chua](https://en.wikipedia.org/wiki/Leon_O._Chua "Leon O. Chua")
* [米切尔费根鲍姆](https://en.wikipedia.org/wiki/Mitchell_Feigenbaum "米切尔费根鲍姆")
* [Celso Grebogi](https://en.wikipedia.org/wiki/Celso_Grebogi "Celso Grebogi")
* [马丁古兹威勒](https://en.wikipedia.org/wiki/Martin_Gutzwiller "马丁古兹威勒")
* [Brosl Hasslacher](https://en.wikipedia.org/wiki/Brosl_Hasslacher "Brosl Hasslacher")
* [米歇尔·赫农](https://en.wikipedia.org/wiki/Michel_H%C3%A9non "米歇尔·赫农")
* [Svetlana Jitomirskaya](https://en.wikipedia.org/wiki/Svetlana_Jitomirskaya "Svetlana Jitomirskaya")
* [布莱娜克拉](https://en.wikipedia.org/wiki/Bryna_Kra "布莱娜克拉")
* [爱德华诺顿洛伦兹](https://en.wikipedia.org/wiki/Edward_Norton_Lorenz "爱德华诺顿洛伦兹")
* [亚历山大·李亚普诺夫](https://en.wikipedia.org/wiki/Aleksandr_Lyapunov "亚历山大·李亚普诺夫")
* [BenoîtMandelbrot](https://en.wikipedia.org/wiki/Benoit_Mandelbrot "Benoit Mandelbrot")
* [嘿哦](https://en.wikipedia.org/wiki/Hee_Oh "嘿哦")
* [爱德华奥特](https://en.wikipedia.org/wiki/Edward_Ott "爱德华奥特")
* [亨利庞加莱](https://en.wikipedia.org/wiki/Henri_Poincar%C3%A9 "亨利庞加莱")
* [玛丽里斯](https://en.wikipedia.org/wiki/Mary_Rees "玛丽里斯")
* [奥托罗斯勒](https://en.wikipedia.org/wiki/Otto_R%C3%B6ssler "奥托罗斯勒")
* [大卫鲁勒](https://en.wikipedia.org/wiki/David_Ruelle "大卫鲁勒")
* [卡罗琳系列](https://en.wikipedia.org/wiki/Caroline_Series "卡罗琳系列")
* [Oleksandr Mykolayovych Sharkovsky](https://en.wikipedia.org/wiki/Oleksandr_Mykolayovych_Sharkovsky "Oleksandr Mykolayovych Sharkovsky")
* [妮娜斯奈斯](https://en.wikipedia.org/wiki/Nina_Snaith "妮娜斯奈斯")
* [Floris Takens](https://en.wikipedia.org/wiki/Floris_Takens "Floris Takens")
* [奥黛丽特拉斯](https://en.wikipedia.org/wiki/Audrey_Terras "奥黛丽特拉斯")
* [玛丽Tsingou](https://en.wikipedia.org/wiki/Mary_Tsingou "玛丽Tsingou")
* [艾米威尔金森](https://en.wikipedia.org/wiki/Amie_Wilkinson "艾米威尔金森")
* [詹姆斯A.约克](https://en.wikipedia.org/wiki/James_A._Yorke "詹姆斯A.约克")
* [赖生生](https://en.wikipedia.org/wiki/Lai-Sang_Young "赖生生")
|
- 啥叫DynamicalBilliards动态粒子(动力台球)
- 五大系统-为啥搞那么复杂?
- 内存数据库triangleBilliard19Redis参数190101
- HiRedis在C++Windows下配置编译使用190101
- 三大视图:inputOrigin_计算系统(无理数非视图)_3输出视图190110
- MGDs-Mp系统:数学生成数据(或数据生成)系统-参数修改模块190102
- MGDs的安装攻略190110
- redis+MGDs-Mp系统完整代码之-代码块1-测试Redis连接190110
- c++中longdouble_longlong等能计算的最大、最小值190101
- 充分解耦的MGDs-充分松耦合的数学生成数据系统190111
- MGDs-数据生成系统的(部分)核心代码190114
- mfc190115