💎一站式轻松地调用各大LLM模型接口,支持GPT4、智谱、星火、月之暗面及文生图 广告
转载请注明出处 http://blog.csdn.net/pony_maggie/article/details/30802249 作者:小马 作为一种常用的数据结构, 了解栈对于算法的学习是非常必要的。栈有先进后出的特点,栈底指向数据表中的第一个元素,栈顶指向最后一个元素的下一个位置。如下图所示: ![](https://box.kancloud.cn/2016-06-13_575e925892318.jpg) 栈和线性表类似,也是有两种存储结构,分别为顺序结构和链式结构。大部分情况下,栈使用前者,这和它的使用场景有关,因为通常情况下我们不会对栈进行频繁地,随机地插入,删除操作。下面是我用顺序结构实现的栈,这个栈有个特点就是它的通用性,因为我并没有限制它所存储的数据类型,代码如下: ~~~ //void**其为双指针,意味入栈和出栈的将只是对应数据的地址,而不需要对数据本身进行拷贝 typedef struct { char *base; char *top; int elementSize; //元素所点字节大小 int stackSize; //当前已分配的空间(注意不是元素的实际个数) }ponyStack; int InitStack(ponyStack *stack, int elementSize) { stack->base = (char *)malloc(STACK_INIT_SIZE * sizeof(char)*elementSize); if (!stack->base) { return RET_ERROR; } stack->top = stack->base; //为空 stack->stackSize = STACK_INIT_SIZE; stack->elementSize = elementSize; return RET_OK; } int ClearStack(ponyStack *stack) { stack->top = stack->base; return RET_OK; } bool IsEmptyStack(ponyStack stack) { if (stack.top == stack.base) { return true; } return false; } ~~~ 这里没有贴出全部的代码,更完整的可以从最后的地址那里下载。注意elementSize,这个是栈可以做到通用的核心。不理解的可以再研究一下代码。 看一个栈的使用示例,数制转换。十进制转八进制。例如(1348)十进制= (2504)八进制,它基于如下的原理: N             N/8             N%8 1348        168               4 168           21                0  21             2                  5  2               0                   2 所以很明显,N不断的除8,每次的余数就是结果的其中一个因子,注意先出来的因子是低位的数,可以考虑用栈来保存每次取余的结果,那么出栈的顺序就是实际的结果顺序。代码很简单: ~~~ int decimalToOctonary(int decimalNumber) { double octNumber = 0; int nCount = 0; int nTemp = 0; ponyStack numberStack; InitStack(&numberStack, 4); while (decimalNumber) { nTemp = (int)decimalNumber%8; Push(&numberStack, &nTemp); decimalNumber = decimalNumber/8; } nCount = CountOfStack(numberStack);//元素个数也就是位数 while(!IsEmptyStack(numberStack)) { Pop(&numberStack, &nTemp); octNumber += (nTemp*pow(10.0, --nCount)); } DestroyStack(&numberStack); return (int)octNumber; } ~~~ 再来看一个行编辑程序的示例,用户在终端输入字符,完成后保存用户的数据区, 因为在输入的过程中可能出错,需要修改,所以不可能每输入一个字符就存入数据区。比较好的做法是先在内存里开一个输入的缓冲区,当用户输入完成一行后,再存入数据区。在行内可以修改。例如,当用户发现刚输入的一个字符是错的之后,可以再输入一个'#',表示前一个字符是错的,如果发现当前行输入的错误太多,可以输入一个退行符'@',表示当前行都无效,举个例子: whli#ilr#e(s#*s) outcha@putchar(*s=#++) 实际有效的字符是这样的: while(*s) putchar(*s++) 可以把内存里这个输入缓冲区定为栈,正常情况下每输入一个字符直接入栈,如果发现字符是'#',就栈顶pop一次,如果是'@'就清空栈.代码实现如下: ~~~ void lineEdit() { char ch = 0; char chTemp = 0; ponyStack lineStack; InitStack(&lineStack, 1); ch = getchar(); while (ch != EOF) { while (ch != EOF && ch != '\n') { switch (ch) { case '#': Pop(&lineStack, &chTemp); break; case '@': ClearStack(&lineStack); break; default: Push(&lineStack, &ch); break; } ch = getchar(); } writeToFile(lineStack);//存数据 ClearStack(&lineStack);//准备接收下一行 if (ch != EOF) { ch = getchar(); } } DestroyStack(&lineStack); } ~~~ 最后一个例子是表达式求值的算法,这个在计算器应用中比较多用到。比如, 求+4*9-16/4 建两个栈,一个存操作数,一个存运算符.为简单起,在运算符栈会预先存一个'#',表示表达式开始,然后以'#'结束。运算规则是这样的: 输入字符,如果是'#',则结束,如果是操作数,直接进操作数栈。如果是运算符,则跟栈顶的运算符比较,如果栈顶的优先级低,直接进栈,接收下一字符,如果相等,脱括号,接收下一个字符,如果栈顶的优先级高,pop两个操作数,pop栈内操作符,运算,然后运算的结果进操作数栈。当前运算符继续跟栈顶比较。 要实现这个代码,首先要有一个表格,存储我们操作符之间的优先级关系,如下所示: ~~~ static char priority[7][7] = { '>','>','<','<','<','>','>', // + '>','>','<','<','<','>','>', // - '>','>','>','>','<','>','>', // * '>','>','>','>','<','>','>', // / '<','<','<','<','<','=',' ', // ( '>','>','>','>',' ','>','>', // ) '<','<','<','<','<',' ','=', // # };// + - * / ( ) # ~~~ 然后实现根据上面的思路,实现起来就比较容易了: ~~~ int evaluateExpression() { char chCurrent = 0; char chOnTop = 0; char chTemp = 0; int nResult = 0; int nTemp = 0; int a,b; int nOperandFlag = 0; ponyStack operatorStack;//运算符栈 ponyStack operandStack; //操作数栈 InitStack(&operatorStack, 1); chTemp = '#'; Push(&operatorStack, &chTemp); InitStack(&operandStack, 4); chCurrent = getchar(); GetTop(operatorStack, &chOnTop); while ((chCurrent != '#')||(chOnTop != '#')) { if (!isOperator(chCurrent))//是操作数,要考虑多位整型数的情况 { nTemp = nTemp * (int)pow(10.0, nOperandFlag); nTemp += (int)(chCurrent - '0'); chCurrent = getchar(); nOperandFlag = 1; } else { if (nOperandFlag == 1) { Push(&operandStack, &nTemp);//操作数输入结束,入栈 nOperandFlag = 0; nTemp = 0; } GetTop(operatorStack, &chOnTop); switch (precede(chOnTop, chCurrent))//比较优先级 { case '<': //栈顶的优先级小 Push(&operatorStack, &chCurrent); chCurrent = getchar(); GetTop(operatorStack, &chOnTop); break; case '=': //脱括号,接收下个字符 Pop(&operatorStack, &chTemp); chCurrent = getchar(); GetTop(operatorStack, &chOnTop); break; case '>': //栈顶的优先级大,出栈运算,结果入栈 { Pop(&operandStack, &a); Pop(&operandStack, &b); Pop(&operatorStack, &chTemp); nTemp = operate(a, chTemp, b); Push(&operandStack, &nTemp); nTemp = 0;//重置 GetTop(operatorStack, &chOnTop); } break; default: break; } } } GetTop(operandStack, &nResult); DestroyStack(&operatorStack); DestroyStack(&operandStack); return nResult; } ~~~ 代码下载地址: https://github.com/pony-maggie/StackDemo 或 http://download.csdn.net/detail/pony_maggie/7499167