作者:[寒小阳](http://blog.csdn.net/han_xiaoyang?viewmode=contents)
时间:2016年1月。
出处:[http://blog.csdn.net/han_xiaoyang/article/details/50451460](http://blog.csdn.net/han_xiaoyang/article/details/50451460)
声明:版权所有,转载请联系作者并注明出处
### 1. 引言
上一节我们讲完了各种激励函数的优缺点和选择,以及网络的大小以及正则化对神经网络的影响。这一节我们讲一讲输入数据预处理、正则化以及损失函数设定的一些事情。
### 2. 数据与网络的设定
前一节提到前向计算涉及到的组件(主要是神经元)设定。神经网络结构和参数设定完毕之后,我们就得到得分函数/score function(忘记的同学们可以翻看一下之前的[博文](http://blog.csdn.net/han_xiaoyang/article/details/49999583)),总体说来,一个完整的神经网络就是在不断地进行线性映射(权重和input的内积)和非线性映射(部分激励函数作用)的过程。这一节我们会展开来讲讲数据预处理,权重初始化和损失函数的事情。
#### 2.1 数据预处理
在卷积神经网处理图像问题的时候,图像数据有3种常见的预处理可能会用到,如下。我们假定数据表示成矩阵为`X`,其中我们假定`X`是[N*D]维矩阵(N是样本数据量,D为单张图片的数据向量长度)。
- **去均值**,这是最常见的图片数据预处理,简单说来,它做的事情就是,对待训练的每一张图片的特征,都减去全部训练集图片的特征均值,这么做的直观意义就是,我们把输入数据各个维度的数据都中心化到0了。使用python的numpy工具包,这一步可以用`X -= np.mean(X, axis = 0)`轻松实现。当然,其实这里也有不同的做法:简单一点,我们可以直接求出所有像素的均值,然后每个像素点都减掉这个相同的值;稍微优化一下,我们在RGB三个颜色通道分别做这件事。
- **归一化**,归一化的直观理解含义是,我们做一些工作去保证所有的维度上数据都在一个变化幅度上。通常我们有两种方法来实现归一化。一个是在数据都去均值之后,每个维度上的数据都除以这个维度上数据的标准差(`X /= np.std(X, axis = 0)`)。另外一种方式是我们除以数据绝对值最大值,以保证所有的数据归一化后都在-1到1之间。多说一句,其实在任何你觉得各维度幅度变化非常大的数据集上,你都可以考虑归一化处理。不过对于图像而言,其实这一步反倒可做可不做,因为大家都知道,像素的值变化区间都在[0,255]之间,所以其实图像输入数据天生幅度就是一致的。
上述两个操作对于数据的作用,画成示意图,如下:
![](https://box.kancloud.cn/2016-03-16_56e90ad506f5f.png)
- **PCA和白化/whitening**,这是另外一种形式的数据预处理。在经过去均值操作之后,我们可以计算数据的协方差矩阵,从而可以知道数据各个维度之间的相关性,简单示例代码如下:
~~~
# 假定输入数据矩阵X是[N*D]维的
X -= np.mean(X, axis = 0) # 去均值
cov = np.dot(X.T, X) / X.shape[0] # 计算协方差
~~~
得到的结果矩阵中元素(i,j)表示原始数据中,第i维和第j维直接爱你的相关性。有意思的是,其实协方差矩阵的对角线包含了每个维度的变化幅度。另外,我们都知道协方差矩阵是对称的,我们可以在其上做矩阵奇异值分解(SVD factorization):
~~~
U,S,V = np.linalg.svd(cov)
~~~
其中U为特征向量,我们如果相对原始数据(去均值之后)做去相关操作,只需要进行如下运算:
~~~
Xrot = np.dot(X, U)
~~~
这么理解一下可能更好,U是一组正交基向量。所以我们可以看做把原始数据`X`投射到这组维度保持不变的正交基底上,从而也就完成了对原始数据的去相关。如果去相关之后你再求一下`Xrot`的协方差矩阵,你会发现这时候的协方差矩阵是一个对角矩阵了。而numpy中的`np.linalg.svd`更好的一个特性是,它返回的U是对特征值排序过的,这也就意味着,我们可以用它进行降维操作。我们可以只取top的一些特征向量,然后做和原始数据做矩阵乘法,这个时候既降维减少了计算量,同时又保存下了绝大多数的原始数据信息,这就是所谓的主成分分析/PCA:
~~~
Xrot_reduced = np.dot(X, U[:,:100])
~~~
这个操作之后,我们把原始数据集矩阵从[N * D]降维到[N*100],保存了前100个能包含绝大多数数据信息的维度。实际应用中,你在PCA降维之后的数据集上,做各种机器学习的训练,在节省空间和时间的前提下,依旧能有很好的训练准确度。
最后我们再提一下whitening操作。所谓whitening,就是把各个特征轴上的数据除以特征向量,从而达到在每个特征轴上都归一化幅度的结果。whitening变换的几何意义和理解是,如果输入的数据是多变量高斯,那whitening之后的 数据是一个均值为0而不同方差的高斯矩阵。这一步简单代码实现如下:
~~~
#白化数据
Xwhite = Xrot / np.sqrt(S + 1e-5)
~~~
提个醒:whitening操作会有严重化噪声的可能。注意到我们在上述代码中,分母的部分加入了一个很小的数1e-5,以防止出现除以0的情况。但是数据中的噪声部分可能会因whitening操作而变大,因为这个操作的本质是把输入的每个维度都拉到差不多的幅度,那么本不相关的有微弱幅度变化的噪声维度,也被拉到了和其他维度同样的幅度。当然,我们适当提高坟墓中的安全因子(1e-5)可以在一定程度上缓解这个问题。
下图为原始数据到去相关到白化之后的数据分布示意图:
![](https://box.kancloud.cn/2016-03-16_56e90ad52f824.png)
我们来看看真实数据集上的操作与得到的结果,也许能对这些过程有更清晰一些的认识。大家都还记得CIFAR-10图像数据集吧。训练集大小为50000 * 3072,也就是说,每张图片都被展成一个3072维度的列向量了。然后我们对原始50000*3072数据矩阵做SVD分解,进行上述一些操作,再可视化一下,得到的结果示意图如下:
![](https://box.kancloud.cn/2016-03-16_56e90ad55224d.png)
我们稍加解释一下,最左边是49张原始图片;左起第2幅图是最3072个特征向量中最top的144个,这144个特征向量包含了绝大多数数据变量信息,而其实它们代表的是图片中低频的信息;左起第3幅图表示PCA降维操作之后的49张图片,使用上面求得的144个特征向量。我们可以观察到图片好像被蒙上了一层东西一样,模糊化了,这也就表明了我们的top144个特征向量捕捉到的都是图像的低频信息,不过我们发现图像的绝大多数信息确实被保留下来了;最右图是whitening的144个数通过乘以`U.transpose()[:144,:]`还原回图片的样子,有趣的是,我们发现,现在低频信息基本都被滤掉了,剩下一些高频信息被放大呈现。
**实际工程中**,因为这个部分讲到数据预处理,我们就把基本的几种数据预处理都讲了一遍,但实际卷积神经网中,我们并没有用到去相关和whitening操作。当然,去均值是非常非常重要的,而每个像素维度的归一化也是常用的操作。
**特别说明**,需要特别说明的一点是,上述的预处理操作,一定都是在训练集上先预算的,然后应用在交叉验证/测试集上的。举个例子,有些同学会先把所有的图片放一起,求均值,然后减掉均值,再把这份数据分作训练集和测试集,这是不对的亲!!!
#### 2.2 权重初始化
我们之前已经看过一个完整的神经网络,是怎么样通过神经元和连接搭建起来的,以及如何对数据做预处理。在训练神经网络之前,我们还有一个任务要做,那就是初始化参数。
**错误的想法:全部初始化为0**,有些同学说,那既然要训练和收敛嘛,初始值就随便设定,简单一点就全设为0好了。亲,这样是绝对不行的!!!为啥呢?我们在神经网络训练完成之前,是不可能预知神经网络最后的权重具体结果的,但是根据我们归一化后的数据,我们可以假定,大概有半数左右的权重是正数,而另外的半数是负数。但设定全部初始权重都为0的结果是,网络中每个神经元都计算出一样的结果,然后在反向传播中有一样的梯度结果,因此迭代之后的变化情况也都一样,这意味着这个神经网络的权重没有办法差异化,也就没有办法学习到东西。
**很小的随机数**,其实我们依旧希望初始的权重是较小的数,趋于0,但是就像我们刚刚讨论过的一样,不要真的是0。综合上述想法,在实际场景中,我们通常会把初始权重设定为非常小的数字,然后正负尽量一半一半。这样,初始的时候权重都是不一样的很小随机数,然后迭代过程中不会再出现迭代一致的情况。举个例子,我们可能可以这样初始化一个权重矩阵`W=0.0001*np.random.randn(D,H)`。这个初始化的过程,使得每个神经元的权重向量初始化为多维高斯中的随机采样向量,所以神经元的初始权重值指向空间中的随机方向。
**特别说明**:其实不一定更小的初始值会比大值有更好的效果。我们这么想,一个有着非常小的权重的神经网络在后向传播过程中,回传的梯度也是非常小的。这样回传的”信号”流会相对也较弱,对于层数非常多的深度神经网络,这也是一个问题,回传到最前的迭代梯度已经很小了。
**方差归一化**,上面提到的建议有一个小问题,对于随机初始化的神经元参数下的输出,其分布的方差随着输入的数量,会增长。我们实际上可以通过除以总输入数目的平方根,归一化每个神经元的输出方差到1。也就是说,我们倾向于初始化神经元的权重向量为`w = np.random.randn(n) / sqrt(n)`,其中n为输入数。
我们从数学的角度,简单解释一下,为什么上述操作可以归一化方差。考虑在激励函数之前的权重w与输入x的内积s=∑niwixi部分,我们计算一下s的方差:
Var(s)=Var(∑inwixi)=∑inVar(wixi)=∑in[E(wi)]2Var(xi)+E[(xi)]2Var(wi)+Var(xi)Var(wi)=∑inVar(xi)Var(wi)=(nVar(w))Var(x)
注意,这个推导的前2步用到了方差的性质。第3步我们假定输入均值为0,因此E[xi]=E[wi]=0。不过这是我们的一个假设,实际情况下并不一定是这样的,比如ReLU单元的均值就是正的。最后一步我们假定wi,xi是独立分布。我们想让s的方差和输入x的方差一致,因此我们想让w的方差取值为1/n,又因为我们有公式Var(aX)=a2Var(X),所以a应该取值为a=1/n‾‾‾√,numpy里的实现为`w = np.random.randn(n) / sqrt(n)`。
对于初始化权重还有一些类似的研究和建议,比如说Glorot在论文[Understanding the difficulty of training deep feedforward neural networks](http://jmlr.org/proceedings/papers/v9/glorot10a/glorot10a.pdf)就推荐使用能满足Var(w)=2/(nin+nout)的权重初始化。其中nin,nout是前一层和后一层的神经元个数。而另外一篇比较新的论文[Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification](http://arxiv.org/abs/1502.01852),则指出尤其对于ReLU神经元,我们初始化方差应该为2.0/n,也就是`w = np.random.randn(n) * sqrt(2.0/n)`,目前的神经网络中使用了很多ReLU单元,因此这个设定其实在实际应用中使用最多。
**偏移量/bias初始化**:相对而言,bias项初始化就简单一些。我们很多时候简单起见,直接就把它们都设为0.在ReLU单元中,有些同学会使用很小的数字(比如0.01)来代替0作为所有bias项的初始值,他们解释说这样也能保证ReLU单元一开始就是被激活的,因此反向传播过程中不会终止掉回传的梯度。不过似乎实际的实验过程中,这个优化并不是每次都能起到作用的,因此很多时候我们还是直接把bias项都初始化为0。
#### 2.3 正则化
在前一节里我们说了我们要通过正则化来控制神经网络,使得它不那么容易过拟合。有几种正则化的类型供选择:
-
**L2正则化**,这个我们之前就提到过,非常常见。实现起来也很简单,我们在损失函数里,加入对每个参数的惩罚度。也就是说,对于每个权重w,我们在损失函数里加入一项12λw2,其中λ是我们可调整的正则化强度。顺便说一句,这里在前面加上1/2的原因是,求导/梯度的时候,刚好变成λw而不是2λw。L2正则化理解起来也很简单,它对于特别大的权重有很高的惩罚度,以求让权重的分配均匀一些,而不是集中在某一小部分的维度上。我们再想想,加入L2正则化项,其实意味着,在梯度下降参数更新的时候,每个权重以W += -lambda*W的程度被拉向0。
-
**L1正则化**,这也是一种很常见的正则化形式。在L1正则化中,我们对于每个权重w的惩罚项为λ|w|。有时候,你甚至可以看到大神们混着L1和L2正则化用,也就是说加入惩罚项λ1∣w∣+λ2w2,L1正则化有其独特的特性,它会让模型训练过程中,权重特征向量逐渐地稀疏化,这意味着到最后,我们只留下了对结果影响最大的一部分权重,而其他不相关的输入(例如『噪声』)因为得不到权重被抑制。所以通常L2正则化后的特征向量是一组很分散的小值,而L1正则化只留下影响较大的权重。在实际应用中,如果你不是特别要求只保留部分特征,那么L2正则化通常能得到比L1正则化更好的效果
-
**最大范数约束**,另外一种正则化叫做最大范数约束,它直接限制了一个上行的权重边界,然后约束每个神经元上的权重都要满足这个约束。实际应用中是这样实现的,我们不添加任何的惩罚项,就按照正常的损失函数计算,只不过在得到每个神经元的权重向量w⃗ 之后约束它满足∥w⃗ ∥2<c。有些人提到这种正则化方式帮助他们提高最后的模型效果。另外,这种正则化方式倒是有一点很吸引人:在神经网络训练学习率设定很高的时候,它也能很好地约束住权重更新变化,不至于直接挂掉。
-
**Dropout**,亲,这个是我们实际神经网络训练中,用的非常多的一种正则化手段,同时也相当有效。Srivastava等人的论文[Dropout: A Simple Way to Prevent Neural Networks from Overfitting](http://www.cs.toronto.edu/~rsalakhu/papers/srivastava14a.pdf)最早提到用dropout这种方式作为正则化手段。一句话概括它,就是:在训练过程中,我们对每个神经元,都以概率p保持它是激活状态,1-p的概率直接关闭它。
下图是一个3层的神经网络的dropout示意图:
![](https://box.kancloud.cn/2016-03-16_56e90ad5b2378.png)
可以这么理解,在训练过程中呢,我们对全体神经元,以概率p做了一个采样,只有选出的神经元要进行参数更新。所以最后就从左图的全连接到右图的Dropout过后神经元连接图了。需要多说一句的是,在测试阶段,我们不用dropout,而是直接从概率的角度,对权重配以一个概率值。
简单的Dropout代码如下(这是简易实现版本,但是不建议使用,我们会分析为啥,并在之后给出优化版):
~~~
p = 0.5 # 设定dropout的概率,也就是保持一个神经元激活状态的概率
def train_step(X):
""" X contains the data """
# 3层神经网络前向计算
H1 = np.maximum(0, np.dot(W1, X) + b1)
U1 = np.random.rand(*H1.shape) < p # 第一次Dropout
H1 *= U1 # drop!
H2 = np.maximum(0, np.dot(W2, H1) + b2)
U2 = np.random.rand(*H2.shape) < p # 第二次Dropout
H2 *= U2 # drop!
out = np.dot(W3, H2) + b3
# 反向传播: 计算梯度... (这里省略)
# 参数更新... (这里省略)
def predict(X):
# 加上Dropout之后的前向计算
H1 = np.maximum(0, np.dot(W1, X) + b1) * p
H2 = np.maximum(0, np.dot(W2, H1) + b2) * p
out = np.dot(W3, H2) + b3
~~~
上述代码中,在`train_step`函数中,我们做了2次Dropout。我们甚至可以在输入层做一次dropout。反向传播过程保持不变,除了我们要考虑一下`U1,U2`
很重要的一点是,大家仔细看`predict`函数部分,我们不再dropout了,而是对于每个隐层的输出,都用概率p做了一个幅度变换。可以从数学期望的角度去理解这个做法,我们考虑一个神经元的输出为x(没有dropout的情况下),它的输出的数学期望为px+(1−p)0,那我们在测试阶段,如果直接把每个输出x都做变换x→px,其实是可以保持一样的数学期望的。
上述代码的写法有一些缺陷,我们必须在测试阶段对每个神经的输出都以p的概率输出。考虑到实际应用中,测试阶段对于时间的要求非常高,我们可以考虑反着来,代码实现的时候用`inverted dropout`,即在训练阶段就做相反的幅度变换/scaling(除以p),这样在测试阶段,我们可以直接把权重拿来使用,而不用附加很多步用p做scaling的过程。`inverted dropout`的示例代码如下:
~~~
"""
Inverted Dropout的版本,把本该花在测试阶段的时间,转移到训练阶段,从而提高testing部分的速度
"""
p = 0.5 # dropout的概率,也就是保持一个神经元激活状态的概率
def train_step(X):
# f3层神经网络前向计算
H1 = np.maximum(0, np.dot(W1, X) + b1)
U1 = (np.random.rand(*H1.shape) < p) / p # 注意到这个dropout中我们除以p,做了一个inverted dropout
H1 *= U1 # drop!
H2 = np.maximum(0, np.dot(W2, H1) + b2)
U2 = (np.random.rand(*H2.shape) < p) / p # 这个dropout中我们除以p,做了一个inverted dropout
H2 *= U2 # drop!
out = np.dot(W3, H2) + b3
# 反向传播: 计算梯度... (这里省略)
# 参数更新... (这里省略)
def predict(X):
# 直接前向计算,无需再乘以p
H1 = np.maximum(0, np.dot(W1, X) + b1)
H2 = np.maximum(0, np.dot(W2, H1) + b2)
out = np.dot(W3, H2) + b3
~~~
对于dropout这个部分如果你有更深的兴趣,欢迎阅读以下文献:
1) 2014 Srivastava 的论文[Dropout paper](http://www.cs.toronto.edu/~rsalakhu/papers/srivastava14a.pdf)
2) [Dropout Training as Adaptive Regularization](http://papers.nips.cc/paper/4882-dropout-training-as-adaptive-regularization.pdf)
- **bias项的正则化**,其实我们在[之前的博客](http://blog.csdn.net/han_xiaoyang/article/details/49999583)中提到过,我们大部分时候并不对偏移量项做正则化,因为它们也没有和数据直接有乘法等交互,也就自然不会影响到最后结果中某个数据维度的作用。不过如果你愿意对它做正则化,倒也不会影响最后结果,毕竟总共有那么多权重项,才那么些bias项,所以一般也不会影响结果。
**实际应用中**:我们最常见到的是,在全部的交叉验证集上使用L2正则化,同时我们在每一层之后用dropout,很常见的dropout概率为p=0.5,你也可以通过交叉验证去调整这个值。
#### 2.4 损失函数
刚才讨论了数据预处理、权重初始化与正则化相关的问题。现在我们回到训练需要的关键之一:损失函数。对于这么复杂的神经网络,我们也得有一个评估准则去评估预测值和真实结果之间的吻合度,也就是损失函数。神经网络里的损失函数,实际上是计算出了每个样本上的loss,再求平均之后的一个形式,即L=1N∑iLi,其中N是训练样本数。
#### 2.4.1 分类问题
- **分类问题**是到目前为止我们一直在讨论的。我们假定一个数据集中每个样本都有唯一一个正确的标签/类别。我们之前提到过有两种损失函数可以使用,其一是SVM的hinge loss:
Li=∑j≠yimax(0,fj−fyi+1)
另外一个是Softmax分类器中用到的互熵损失:
Li=−log(efyi∑jefj)
-
**问题:特别多的类别数**。当类别标签特别特别多的时候(比如ImageNet包含22000个类别),[层次化的Softmax](http://arxiv.org/pdf/1310.4546.pdf),它将类别标签建成了一棵树,这样任何一个类别,其实就对应tree的一条路径,然后我们在每个树的结点上都训练一个Softmax以区分是左分支还是右分支。
-
**属性分类**,上述的两种损失函数都假定,对于每个样本,我们只有一个正确的答案yi。但是在有些场景下,yi是一个二值的向量,每个元素都代表有没有某个属性,这时候我们怎么办呢?举个例子说,Instagram上的图片可以看作一大堆hashtag里的一个tag子集,所有一张图片可以有多个tag。对于这种情况,大家可能会想到一个最简单的处理方法,就是对每个属性值都建一个二分类的分类器。比如,对应某个类别的二分类器可能有如下形式的损失函数:
Li=∑jmax(0,1−yijfj)
其中的求和是针对有所的类别j,而yij是1或者-1(取决于第i个样本是否有第j个属性的标签),打分向量fj在类别/标签被预测到的情况下为正,其他情况为负。注意到如果正样本有比+1小的得分,或者负样本有比-1大的得分,那么损失/loss就一直在累积。
另外一个也许有效的解决办法是,我们可以对每个属性,都单独训练一个逻辑回归分类器,一个二分类的逻辑回归分类器只有0,1两个类别,属于1的概率为:
P(y=1∣x;w,b)=11+e−(wTx+b)=σ(wTx+b)
又因为0,1两类的概率和为1,所以归属于类别0的概率为P(y=0∣x;w,b)=1−P(y=1∣x;w,b)。一个样本在σ(wTx+b)>0.5的情况下被判定为1,对应sigmoid函数化简一下,对应的是得分wTx+b>0。这时候的损失函数可以定义为最大化似然概率的形式,也就是:
Li=∑jyijlog(σ(fj))+(1−yij)log(1−σ(fj))
其中标签yij为1(正样本)或者0(负样本),而δ是sigmoid函数。
#### 2.4.2 回归问题
回归是另外一类机器学习问题,主要用于预测连续值属性,比如房子的价格或者图像中某些东西的长度等。对于回归问题,我们一般计算预测值和实际值之间的差值,然后再求L2范数或者L1范数用于衡量。其中对一个样本(一张图片)计算的L2范数损失为:
Li=∥f−yi∥22
而L1范数损失函数是如下的形式:
Li=∥f−yi∥1=∑j∣fj−(yi)j∣
**注意**:
- 回归问题中用到的L2范数损失,比分类问题中的Softmax分类器用到的损失函数,更难优化。直观想一想这个问题,一个神经网络最后输出离散的判定类别,比训练它去输出一个个和样本结果对应的连续值,要简单多了。
- 我们前面的[博文](http://blog.csdn.net/han_xiaoyang/article/details/49999583)中提到过,其实Softmax这种分类器,对于输出的打分结果具体值是不怎么在乎的,它只在乎各个类别之间的打分幅度有没有差很多(比如二分类两个类别的得分是1和9,与0.1和0.9)。
- 再一个,L2范数损失健壮性更差一些,异常点和噪声都可能改变损失函数的幅度,而带来大的梯度偏差。
- 一般情况下,对于回归问题,我们都会首先考虑,这个问题能否转化成对应的分类问题,比如说我们把输出值划分成不同的区域(切成一些桶)。举个例子,如果我们要预测一部电影的豆瓣打分,我们可以考虑把得分结果分成1-5颗星,而转化成一个分类问题。
- 如果你觉得问题确实没办法转化成分类问题,那要小心使用L2范数损失:举个例子,在神经网络中,在L2损失函数之前使用dropout是不合适的。
> 如果我们遇到回归问题,首先要想想,是否完全没有可能把结果离散化之后,把这个问题转化成一个分类问题。
### 3. 总结
总结一下:
- 在很多神经网络的问题中,我们都建议对数据特征做预处理,去均值,然后归一化到[-1,1]之间。
- 从一个标准差为2/n‾‾‾√的高斯分布中初始化权重,其中n为输入的个数。
- 使用L2正则化(或者最大范数约束)和dropout来减少神经网络的过拟合。
- 对于分类问题,我们最常见的损失函数依旧是SVM hinge loss和Softmax互熵损失。