Collective communication means all processes within a communicatorcall the same routine. Portable applications should assume thatcollective routines include a global synchronization.
The following simple code fragment employs four basic collectiveroutines to manipulate a statically partitioned regular domain(one-dimensional in this case). The full domain length is broadcastfrom a root process to all others. The initial dataset is distributed(scattered) among the processes. After each compute step, a globalmaximum is determined for use by the root. The root then gathersthe final dataset.
~~~
#include <mpi.h>
{
int i;
int myrank;
int size;
int root;
int full_domain_length;
int sub_domain_length;
double global_max;
double local_max;
double *full_domain;
double *sub_domain;
MPI_Comm_rank(MPI_COMM_WORLD, &myrank);
MPI_Comm_size(MPI_COMM_WORLD, &size);
root = 0;
/*
* Root obtains full domain and broadcasts its length.
*/
if (myrank == root) {
get_full_domain(&full_domain, &full_domain_length);
}
MPI_Bcast(&full_domain_length, 1, MPI_INT, root, MPI_COMM_WORLD);
/*
* Allocate subdomain memory.
* Scatter the initial dataset among the processes.
*/
sub_domain_length = full_domain_length / size;
sub_domain = (double *) malloc(sub_domain_length * sizeof(double));
MPI_Scatter(full_domain, sub_domain_length, MPI_DOUBLE,
sub_domain, sub_domain_length, MPI_DOUBLE,
root, MPI_COMM_WORLD);
/*
* Loop computing and determining max values.
*/
for (i = 0; i < NSTEPS; ++i) {
compute(sub_domain, sub_domain_length, &local_max);
MPI_Reduce(&local_max, &global_max, 1, MPI_DOUBLE,
MPI_MAX, root, MPI_COMM_WORLD);
}
/*
* Gather final dataset.
*/
MPI_Gather(sub_domain, sub_domain_length, MPI_DOUBLE,
full_domain, sub_domain_length, MPI_DOUBLE,
root, MPI_COMM_WORLD);
}
~~~
### Broadcast
~~~
MPI_Bcast(void *buffer, int count, MPI_Datatype datatype,
int root, MPI_Comm comm);
~~~
All processes use the same count, datatype, root, and communicator.Before the operation, the root buffer contains a message. After theoperation, all buffers contain the message from the root process.
### Scatter
~~~
MPI_Scatter(void *sndbuf, int sndcnt, MPI_Datatype sndtype,
void *rcvbuf, int rcvcnt, MPI_Datatype rcvtype,
int root, MPI_Comm comm);
~~~
All processes use the same send and receive counts, datatypes, rootand communicator. Before the operation, the root send buffer containsa message of length `sndcnt * N', where N is the number of processes.After the operation, the message is divided equally and dispersed toall processes (including the root) following rank order.
### Reduce
~~~
MPI_Reduce(void *sndbuf, void *rcvbuf, int count,
MPI_Datatype datatype, MPI_Op op,
int root, MPI_Comm comm);
~~~
All processes use the same count, datatype, reduction operation, rootand communicator. After the operation, the root process has in itsreceive buffer the result of the pair-wise reduction of the sendbuffers of all processes, including its own. MPI predefines reductionoperations, including: MPI_MAX, MPI_MIN, MPI_SUM, MPI_PROD, MPI_LAND,MPI_BAND, MPI_LOR, MPI_BOR, MPI_LXOR, MPI_BXOR.
### Gather
~~~
MPI_Gather(void *sndbuf, int sndcnt, MPI_Datatype sndtype,
void *rcvbuf, int rcvcnt, MPI_Datatype rcvtype,
int root, MPI_Comm comm);
~~~
All processes use the same send and receive counts, datatypes, root andcommunicator. This routine is the reverse of MPI_Scatter(): after theoperation the root process has in its receive buffer the concatenationof the send buffers of all processes (including its own), with a totalmessage length of `rcvcnt * N', where N is the number of processes.The message is gathered following rank order.