其实想了很久要不要去分析下key值得提取,因为key值的提取是比较简单的,而且没多大实用。因为你不可能去修改key的结构,也不可能去修改key值得提取函数(当然了除非你想重构openVswitch整个项目),更不可能在key提取函数中添加自己的代码。因此对于分析key值没有多大的实用性。但我依然去简单分析key值得提取函数,有两个原因:第一、key值作为数据结构在openVswitch中是非常重要的,后期的一些流表查询和匹配都要用到key值;第二、想借机复习下内核网络协议栈的各层协议信息;
首先来看下各层协议的协议信息:
第一、二层帧头信息
~~~
struct ethhdr {
unsigned char h_dest[ETH_ALEN]; /*目标Mac地址 6个字节*/
unsigned char h_source[ETH_ALEN]; /*源Mac地址*/
__be16 h_proto; /*包的协议类型 IP包:0x800;ARP包:0x806;IPV6:0x86DD*/
} __attribute__((packed));
/*从skb网络数据包中获取到帧头*/
static inline struct ethhdr *eth_hdr(const struct sk_buff *skb)
{
return (struct ethhdr *)skb_mac_header(skb);
}
~~~
第二、三层网络层IP头信息
~~~
/*IPV4头结构体*/
struct iphdr {
#if defined(__LITTLE_ENDIAN_BITFIELD)
__u8 ihl:4, // 报文头部长度
version:4; // 版本IPv4
#elif defined (__BIG_ENDIAN_BITFIELD)
__u8 version:4,
ihl:4;
#else
#error "Please fix <asm/byteorder.h>"
#endif
__u8 tos; // 服务类型
__be16 tot_len; // 报文总长度
__be16 id; // 标志符
__be16 frag_off; // 片偏移量
__u8 ttl; // 生存时间
__u8 protocol; // 协议类型 TCP:6;UDP:17
__sum16 check; // 报头校验和
__be32 saddr; // 源IP地址
__be32 daddr; // 目的IP地址
/*The options start here. */
};
#ifdef __KERNEL__
#include <linux/skbuff.h>
/*通过数据包skb获取到IP头部结构体指针*/
static inline struct iphdr *ip_hdr(const struct sk_buff *skb)
{
return (struct iphdr *)skb_network_header(skb);
}
/*通过数据包skb获取到二层帧头结构体指针*/
static inline struct iphdr *ipip_hdr(const struct sk_buff *skb)
{
return (struct iphdr *)skb_transport_header(skb);
}
~~~
第三、ARP协议头信息
~~~
struct arphdr
{
__be16 ar_hrd; /* format of hardware address硬件类型 */
__be16 ar_pro; /* format of protocol address协议类型 */
unsigned char ar_hln; /* length of hardware address硬件长度 */
unsigned char ar_pln; /* length of protocol address协议长度 */
__be16 ar_op; /* ARP opcode (command)操作,请求:1;应答:2;*/
#if 0 //下面被注释掉了,使用时要自己定义结构体
/*
* Ethernet looks like this : This bit is variable sized however...
*/
unsigned char ar_sha[ETH_ALEN]; /* sender hardware address源Mac */
unsigned char ar_sip[4]; /* sender IP address源IP */
unsigned char ar_tha[ETH_ALEN]; /* target hardware address目的Mac */
unsigned char ar_tip[4]; /* target IP address 目的IP */
#endif
};
~~~
对于传输层协议信息TCP/UDP协议头信息比较多,这里就不分析了。下面直接来看key值提取代码:
~~~
int ovs_flow_extract(struct sk_buff *skb, u16 in_port, struct sw_flow_key *key)
{
int error;
struct ethhdr *eth; //帧头协议结构指针
memset(key, 0, sizeof(*key));// 初始化key为0
key->phy.priority = skb->priority;//赋值skb数据包的优先级
if (OVS_CB(skb)->tun_key)
memcpy(&key->tun_key, OVS_CB(skb)->tun_key, sizeof(key->tun_key));
key->phy.in_port = in_port;// 端口成员的设置
key->phy.skb_mark = skb_get_mark(skb);//默认为0
skb_reset_mac_header(skb);//该函数的实现skb->mac_header = skb->data;
/* Link layer. We are guaranteed to have at least the 14 byte Ethernet
* header in the linear data area.
*/
eth = eth_hdr(skb); //获取到以太网帧头信息
memcpy(key->eth.src, eth->h_source, ETH_ALEN);// 源地址成员赋值
memcpy(key->eth.dst, eth->h_dest, ETH_ALEN);// 目的地址成员赋值
__skb_pull(skb, 2 * ETH_ALEN);//这是移动skb结构中指针
if (vlan_tx_tag_present(skb))// 数据包的类型判断设置
key->eth.tci = htons(vlan_get_tci(skb));
else if (eth->h_proto == htons(ETH_P_8021Q))// 协议类型设置
if (unlikely(parse_vlan(skb, key)))
return -ENOMEM;
key->eth.type = parse_ethertype(skb);//包的类型设置,即是IP包还是ARP包
if (unlikely(key->eth.type == htons(0)))
return -ENOMEM;
skb_reset_network_header(skb);// 函数实现:skb->nh.raw = skb->data;
__skb_push(skb, skb->data - skb_mac_header(skb));// 移动skb中的指针
/* Network layer. */
// 判断是否是邋IP数据包,如果是则设置IP相关字段
if (key->eth.type == htons(ETH_P_IP)) {
struct iphdr *nh;//设置IP协议头信息结构体指针
__be16 offset;// 大端格式short类型变量
error = check_iphdr(skb);// 检测IP协议头信息
if (unlikely(error)) {
if (error == -EINVAL) {
skb->transport_header = skb->network_header;
error = 0;
}
return error;
}
nh = ip_hdr(skb);// 函数实现:return (struct iphdr *)skb_network_header(skb);
// 下面就是IP协议头的一些字段的赋值
key->ipv4.addr.src = nh->saddr;
key->ipv4.addr.dst = nh->daddr;
key->ip.proto = nh->protocol;
key->ip.tos = nh->tos;
key->ip.ttl = nh->ttl;
offset = nh->frag_off & htons(IP_OFFSET);
if (offset) {
key->ip.frag = OVS_FRAG_TYPE_LATER;
return 0;
}
if (nh->frag_off & htons(IP_MF) ||
skb_shinfo(skb)->gso_type & SKB_GSO_UDP)
key->ip.frag = OVS_FRAG_TYPE_FIRST;
/* Transport layer. */
if (key->ip.proto == IPPROTO_TCP) {
if (tcphdr_ok(skb)) {
struct tcphdr *tcp = tcp_hdr(skb);
key->ipv4.tp.src = tcp->source;
key->ipv4.tp.dst = tcp->dest;
}
} else if (key->ip.proto == IPPROTO_UDP) {
if (udphdr_ok(skb)) {
struct udphdr *udp = udp_hdr(skb);
key->ipv4.tp.src = udp->source;
key->ipv4.tp.dst = udp->dest;
}
} else if (key->ip.proto == IPPROTO_ICMP) {
if (icmphdr_ok(skb)) {
struct icmphdr *icmp = icmp_hdr(skb);
/* The ICMP type and code fields use the 16-bit
* transport port fields, so we need to store
* them in 16-bit network byte order. */
key->ipv4.tp.src = htons(icmp->type);
key->ipv4.tp.dst = htons(icmp->code);
}
}
// 判断是否是ARP数据包,设置ARP数据包字段
} else if ((key->eth.type == htons(ETH_P_ARP) ||
key->eth.type == htons(ETH_P_RARP)) && arphdr_ok(skb)) {
struct arp_eth_header *arp; // 定义ARP协议头结构体指针
arp = (struct arp_eth_header *)skb_network_header(skb);// return skb->nh.raw;
// 下面就是一些ARP数据包字段的设置
if (arp->ar_hrd == htons(ARPHRD_ETHER)
&& arp->ar_pro == htons(ETH_P_IP)
&& arp->ar_hln == ETH_ALEN
&& arp->ar_pln == 4) {
/* We only match on the lower 8 bits of the opcode. */
if (ntohs(arp->ar_op) <= 0xff)
key->ip.proto = ntohs(arp->ar_op);
memcpy(&key->ipv4.addr.src, arp->ar_sip, sizeof(key->ipv4.addr.src));
memcpy(&key->ipv4.addr.dst, arp->ar_tip, sizeof(key->ipv4.addr.dst));
memcpy(key->ipv4.arp.sha, arp->ar_sha, ETH_ALEN);
memcpy(key->ipv4.arp.tha, arp->ar_tha, ETH_ALEN);
}
//判断是否是IPV6数据包,设置IPV6数据包字段
} else if (key->eth.type == htons(ETH_P_IPV6)) {
int nh_len; /* IPv6 Header + Extensions */
// IPV6就不分析了
nh_len = parse_ipv6hdr(skb, key);
if (unlikely(nh_len < 0)) {
if (nh_len == -EINVAL) {
skb->transport_header = skb->network_header;
error = 0;
} else {
error = nh_len;
}
return error;
}
if (key->ip.frag == OVS_FRAG_TYPE_LATER)
return 0;
if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP)
key->ip.frag = OVS_FRAG_TYPE_FIRST;
/* Transport layer. */
if (key->ip.proto == NEXTHDR_TCP) {
if (tcphdr_ok(skb)) {
struct tcphdr *tcp = tcp_hdr(skb);
key->ipv6.tp.src = tcp->source;
key->ipv6.tp.dst = tcp->dest;
}
} else if (key->ip.proto == NEXTHDR_UDP) {
if (udphdr_ok(skb)) {
struct udphdr *udp = udp_hdr(skb);
key->ipv6.tp.src = udp->source;
key->ipv6.tp.dst = udp->dest;
}
} else if (key->ip.proto == NEXTHDR_ICMP) {
if (icmp6hdr_ok(skb)) {
error = parse_icmpv6(skb, key, nh_len);
if (error)
return error;
}
}
}
return 0;
}
~~~
- 前言
- OVS datapath模块分析:packet处理流程
- openVswitch(OVS)源代码分析之简介
- openVswitch(OVS)源代码分析之数据结构
- openVswitch(OVS)源代码分析之工作流程(收发数据包)
- openVswitch(OVS)源代码分析之工作流程(数据包处理)
- openVswitch(OVS)源代码分析之工作流程(key值得提取)
- openVswitch(OVS)源代码分析之工作流程(flow流表查询)
- openVswitch(OVS)源代码的分析技巧(哈希桶结构体为例)
- openVswitch(OVS)源代码分析之工作流程(哈希桶结构体的解释)
- openVswitch(OVS)源代码之linux RCU锁机制分析
- openVswitch(OVS)源代码分析 upcall调用(之linux中的NetLink通信机制)
- openVswitch(OVS)源代码分析 upcall调用(一)