🔥码云GVP开源项目 12k star Uniapp+ElementUI 功能强大 支持多语言、二开方便! 广告
## 实验步骤 (1)在ubuntu下,利用系统提供的进程控制函数fork、wait系统调用编写多进程程序process.c,编译运行,分析运行结果. 后面开始修改linux0.11内核: (2)在init/main.c中的main()中添加创建日志文件/var/process.log的语句. (3)在printk.c中添加日志打印功能。 (4)在fork.c、sched.c和exit.c中,找到正确的状态转换点,并添加合适的状态信息 (5)用(4)中修改后的3个程序分别替换linux0.11中原有的程序,并编译内核。 (6)运行虚拟机,编译并运行process.c. (7)在虚拟机上运行ls -l /var”或“ll /var”查看process.log是否建立,及它的属性和长度;运行“vi /var/process.log”或“more /var/process.log”查看整个log文件。检查打印出的状态转换信息是否正确。 (8)阅读0.11的[调度](http://cms.hit.edu.cn/mod/quiz/view.php?id=3410 "调度")函数schedule,分析linux的[调度](https://cms.hit.edu.cn/mod/quiz/view.php?id=3410 "调度")算法,思考下面两个问题 a、进程counter是如何初始化的? b、当进程的时间片用完时,被重新赋成何值? (9)对现有的[调度](http://cms.hit.edu.cn/mod/quiz/view.php?id=3410 "调度")算法进行时间片大小的修改,并重新编译、运行内核进行验证。 (1)process.c ~~~ #include <stdio.h> #include <unistd.h> #include <time.h> #include <sys/times.h> #include <stdlib.h> #include <sys/wait.h> #include <sys/types.h> #include <errno.h> #define HZ 100 void cpuio_bound(int last, int cpu_time, int io_time); int main(int argc, char * argv[]) { pid_t Pid1; pid_t Pid2; pid_t Pid3; Pid1 = fork(); if (Pid1 < 0) printf("error in fork!"); else if (Pid1 == 0) { printf("child process 1:\n"); cpuio_bound(5, 2, 2); } Pid2 = fork(); if (Pid2 < 0) printf("error in fork!"); else if (Pid2 == 0) { printf("child process 2:\n"); cpuio_bound(5, 4, 0); } Pid3 = fork(); if (Pid3 < 0) printf("error in fork!"); else if (Pid3 == 0) { printf("child process 3:\n"); cpuio_bound(5, 0, 4); } printf("This process's Pid is %d\n", getpid()); printf("Pid of child process 1 is %d\n", Pid1); printf("Pid of child process 2 is %d\n", Pid2); printf("Pid of child process 3 is %d\n", Pid3); wait(NULL); wait(NULL); wait(NULL); return 0; } /* * 此函数按照参数占用CPU和I/O时间 * last: 函数实际占用CPU和I/O的总时间,不含在就绪队列中的时间,>=0是必须的 * cpu_time: 一次连续占用CPU的时间,>=0是必须的 * io_time: 一次I/O消耗的时间,>=0是必须的 * 如果last > cpu_time + io_time,则往复多次占用CPU和I/O * 所有时间的单位为秒 */ void cpuio_bound(int last, int cpu_time, int io_time) { struct tms start_time, current_time; clock_t utime, stime; int sleep_time; while (last > 0) { /* CPU Burst */ times(&start_time); /* 其实只有t.tms_utime才是真正的CPU时间。但我们是在模拟一个 * 只在用户状态运行的CPU大户,就像“for(;;);”。所以把t.tms_stime * 加上很合理。*/ do { times(¤t_time); utime = current_time.tms_utime - start_time.tms_utime; stime = current_time.tms_stime - start_time.tms_stime; } while ( ( (utime + stime) / HZ ) < cpu_time ); last -= cpu_time; if (last <= 0 ) break; /* IO Burst */ /* 用sleep(1)模拟1秒钟的I/O操作 */ sleep_time=0; while (sleep_time < io_time) { sleep(1); sleep_time++; } last -= sleep_time; } } ~~~ (2)init/main.c ### 打开log文件 为了能尽早开始记录,应当在内核启动时就打开log文件。内核的入口是init/main.c中的main()(Windows环境下是start()),其中一段代码是: ~~~ …… move_to_user_mode(); if (!fork()) { /* we count on this going ok */ init(); } …… ~~~ 这段代码在进程0中运行,先切换到用户模式,然后全系统第一次调用fork()建立进程1。进程1调用init()。在init()中: ~~~ …… setup((void *) &drive_info); //加载文件系统 (void) open("/dev/tty0",O_RDWR,0); //打开/dev/tty0,建立文件描述符0和/dev/tty0的关联 (void) dup(0); //让文件描述符1也和/dev/tty0关联 (void) dup(0); //让文件描述符2也和/dev/tty0关联 …… ~~~ 这段代码建立了文件描述符0、1和2,它们分别就是stdin、stdout和stderr。这三者的值是系统标准(Windows也是如此),不可改变。可以把log文件的描述符关联到3。文件系统初始化,描述符0、1和2关联之后,才能打开log文件,开始记录进程的运行轨迹。为了能尽早访问log文件,我们要让上述工作在进程0中就完成。所以把这一段代码从init()**移动到**main()中,放在move_to_user_mode()之后(不能再靠前了),同时加上打开log文件的代码。修改后的main()如下: ~~~ …… move_to_user_mode(); /***************添加开始***************/ setup((void *) &drive_info); (void) open("/dev/tty0",O_RDWR,0); //建立文件描述符0和/dev/tty0的关联 (void) dup(0); //文件描述符1也和/dev/tty0关联 (void) dup(0); //文件描述符2也和/dev/tty0关联 (void) open("/var/process.log",O_CREAT|O_TRUNC|O_WRONLY,0666); /***************添加结束***************/ if (!fork()) { /* we count on this going ok */ init(); } …… ~~~ (3)kernel/printk.c 向printk.c中添加日志打印功能 因为和printk的功能近似,建议将此函数放入到kernel/printk.c中。fprintk()的使用方式类同与C标准库函数fprintf(),唯一的区别是第一个参数是文件描述符,而不是文件指针。例如: ~~~ fprintk(1, "The ID of running process is %ld", current->pid); //向stdout打印正在运行的进程的ID fprintk(3, "%ld\t%c\t%ld\n", current->pid, 'R', jiffies); //向log文件输出 ~~~ 将下面代码加入到printk.c中 ~~~ /* * linux/kernel/printk.c * * (C) 1991 Linus Torvalds */ /* * When in kernel-mode, we cannot use printf, as fs is liable to * point to 'interesting' things. Make a printf with fs-saving, and * all is well. */ #include <stdarg.h> #include <stddef.h> #include <linux/sched.h> #include <sys/stat.h> #include <linux/kernel.h> static char buf[1024]; static char logbuf[1024]; extern int vsprintf(char * buf, const char * fmt, va_list args); int printk(const char *fmt, ...) { va_list args; int i; va_start(args, fmt); i=vsprintf(buf,fmt,args); va_end(args); __asm__("push %%fs\n\t" "push %%ds\n\t" "pop %%fs\n\t" "pushl %0\n\t" "pushl $buf\n\t" "pushl $0\n\t" "call tty_write\n\t" "addl $8,%%esp\n\t" "popl %0\n\t" "pop %%fs" ::"r" (i):"ax","cx","dx"); return i; } int fprintk(int fd, const char *fmt, ...) { va_list args; int count; struct file * file; struct m_inode * inode; va_start(args, fmt); count=vsprintf(logbuf, fmt, args); va_end(args); if (fd < 3) /* 如果输出到stdout或stderr,直接调用sys_write即可 */ { __asm__("push %%fs\n\t" "push %%ds\n\t" "pop %%fs\n\t" "pushl %0\n\t" "pushl $logbuf\n\t" /* 注意对于Windows环境来说,是_logbuf,下同 */ "pushl %1\n\t" "call sys_write\n\t" /* 注意对于Windows环境来说,是_sys_write,下同 */ "addl $8,%%esp\n\t" "popl %0\n\t" "pop %%fs" ::"r" (count),"r" (fd):"ax","cx","dx"); } else /* 假定>=3的描述符都与文件关联。事实上,还存在很多其它情况,这里并没有考虑。*/ { if (!(file=task[0]->filp[fd])) /* 从进程0的文件描述符表中得到文件句柄 */ return 0; inode=file->f_inode; __asm__("push %%fs\n\t" "push %%ds\n\t" "pop %%fs\n\t" "pushl %0\n\t" "pushl $logbuf\n\t" "pushl %1\n\t" "pushl %2\n\t" "call file_write\n\t" "addl $12,%%esp\n\t" "popl %0\n\t" "pop %%fs" ::"r" (count),"r" (file),"r" (inode):"ax","cx","dx"); } return count; } ~~~ (4)fork.c 修改下列三个文件参考进程状态表,当状态改变时,向日志输出 | 内核表示 | 含义 | |-----|-----| | TASK_RUNNING | 可运行 | | TASK_INTERRUPTIBLE | 可中断的等待状态 | | TASK_UNINTERRUPTIBLE | 不可中断的等待状态 | | TASK_ZOMBIE | 僵死 | | TASK_STOPPED | 暂停 | | TASK_SWAPPING | 换入/换出 | ~~~ #include <errno.h> #include <linux/sched.h> #include <linux/kernel.h> #include <asm/segment.h> #include <asm/system.h> extern void write_verify(unsigned long address); long last_pid=0; void verify_area(void * addr,int size) { ... } int copy_mem(int nr,struct task_struct * p) { ... } int copy_process(int nr,long ebp,long edi,long esi,long gs,long none, long ebx,long ecx,long edx, long fs,long es,long ds, long eip,long cs,long eflags,long esp,long ss) { p->start_time = jiffies; /*在上面一行初始化了进程的开始时间所以赶快输出一条进程创建的Log*/ fprintk(3,"%ld\t%c\t%ld\n",last_pid,'N',jiffies); ... p->state = TASK_RUNNING; /* do this last, just in case */ /*在上面一行改变了进程的状态这里输出一个进入就绪队列的Log*/ /*进程中Running表示的是可以运行,并不是正在运行*/ fprintk(3,"%ld\t%c\t%ld\n",last_pid,'J',jiffies); return last_pid; } int find_empty_process(void) { ... } ~~~ (5)exit.c ~~~ #include <errno.h> #include <signal.h> #include <sys/wait.h> #include <linux/sched.h> #include <linux/kernel.h> #include <linux/tty.h> #include <asm/segment.h> int sys_pause(void); int sys_close(int fd); void release(struct task_struct * p) { ... } static inline int send_sig(long sig,struct task_struct * p,int priv) { ... } static void kill_session(void) { ... } int sys_kill(int pid,int sig) { ... } static void tell_father(int pid) { ... } int do_exit(long code) { ... } int sys_exit(int error_code) { ... } int sys_waitpid(pid_t pid,unsigned long * stat_addr, int options) { int flag, code; struct task_struct ** p; verify_area(stat_addr,4); repeat: flag=0; for(p = &LAST_TASK ; p > &FIRST_TASK ; --p) { if (!*p || *p == current) continue; if ((*p)->father != current->pid) continue; if (pid>0) { if ((*p)->pid != pid) continue; } else if (!pid) { if ((*p)->pgrp != current->pgrp) continue; } else if (pid != -1) { if ((*p)->pgrp != -pid) continue; } switch ((*p)->state) { case TASK_STOPPED: if (!(options & WUNTRACED)) continue; put_fs_long(0x7f,stat_addr); return (*p)->pid; case TASK_ZOMBIE: current->cutime += (*p)->utime; current->cstime += (*p)->stime; flag = (*p)->pid; code = (*p)->exit_code; /*输出一条进程退出的Log*/ /*TASK_STOPED状态只是将当前进程转入睡眠状态,收到SIG_CONT信号时会被唤醒*/ /*TASK_ZOMBIE状态则是当前进程被KILL,并发送信号给父进程*/ fprintk(3,"%ld\t%c\t%ld\n",flag,'E',jiffies); release(*p); put_fs_long(code,stat_addr); return flag; default: flag=1; continue; } } if (flag) { if (options & WNOHANG) return 0; current->state=TASK_INTERRUPTIBLE; /*输出一条等待的Log*/ /*这里要注意一下输出wait的时候要判断一下 pid 是不是等于0 如果等于0 就不输出Log*/ /*0号进程是守护进程,cpu空闲的时候一直在waiting,输出它的话是不会通过脚本检查的哦*/ if (current->pid!=0) fprintk(3,"%ld\t%c\t%ld\n",current->pid,'W',jiffies); schedule(); if (!(current->signal &= ~(1<<(SIGCHLD-1)))) goto repeat; else return -EINTR; } return -ECHILD; } ~~~ (6)sched.c ~~~ #include <linux/sched.h> #include <linux/kernel.h> #include <linux/sys.h> #include <linux/fdreg.h> #include <asm/system.h> #include <asm/io.h> #include <asm/segment.h> #include <signal.h> #define _S(nr) (1<<((nr)-1)) #define _BLOCKABLE (~(_S(SIGKILL) | _S(SIGSTOP))) void show_task(int nr,struct task_struct * p) { ... } void show_stat(void) { ... } #define LATCH (1193180/HZ) extern void mem_use(void); extern int timer_interrupt(void); extern int system_call(void); union task_union { struct task_struct task; char stack[PAGE_SIZE]; }; static union task_union init_task = {INIT_TASK,}; long volatile jiffies=0; long startup_time=0; struct task_struct *current = &(init_task.task); struct task_struct *last_task_used_math = NULL; struct task_struct * task[NR_TASKS] = {&(init_task.task), }; long user_stack [ PAGE_SIZE>>2 ] ; struct { long * a; short b; } stack_start = { & user_stack [PAGE_SIZE>>2] , 0x10 }; void math_state_restore() { ... } void schedule(void) { int i,next,c; struct task_struct ** p; /* check alarm, wake up any interruptible tasks that have got a signal */ for(p = &LAST_TASK ; p > &FIRST_TASK ; --p) if (*p) { if ((*p)->alarm && (*p)->alarm < jiffies) { (*p)->signal |= (1<<(SIGALRM-1)); (*p)->alarm = 0; } if (((*p)->signal & ~(_BLOCKABLE & (*p)->blocked)) && (*p)->state==TASK_INTERRUPTIBLE) { (*p)->state=TASK_RUNNING; /*输出就绪的Log*/ fprintk(3,"%ld\t%c\t%ld\n",(*p)->pid,'J',jiffies); } } /* this is the scheduler proper: */ while (1) { c = -1; next = 0; i = NR_TASKS; p = &task[NR_TASKS]; while (--i) { if (!*--p) continue; if ((*p)->state == TASK_RUNNING && (*p)->counter > c) c = (*p)->counter, next = i; } if (c) break; for(p = &LAST_TASK ; p > &FIRST_TASK ; --p) if (*p) (*p)->counter = ((*p)->counter >> 1) + (*p)->priority; } if(current->state == TASK_RUNNING && current != task[next]) /*输出就绪的Log*/ fprintk(3,"%ld\t%c\t%ld\n",current->pid,'J',jiffies); if(current != task[next]) /*输出可运行的Log*/ fprintk(3,"%ld\t%c\t%ld\n",task[next]->pid,'R',jiffies); switch_to(next); } int sys_pause(void) { current->state = TASK_INTERRUPTIBLE; /*检查并输出等待的Log*/ if (current->pid != 0) fprintk(3,"%ld\t%c\t%ld\n",current->pid,'W',jiffies); schedule(); return 0; } void sleep_on(struct task_struct **p) { struct task_struct *tmp; if (!p) return; if (current == &(init_task.task)) panic("task[0] trying to sleep"); tmp = *p; *p = current; current->state = TASK_UNINTERRUPTIBLE; /*检查并输出等待的Log*/ if (current->pid != 0) fprintk(3,"%ld\t%c\t%ld\n",current->pid,'W',jiffies); schedule(); *p = tmp; if (tmp) { tmp->state=TASK_RUNNING; /*输出就绪的Log*/ fprintk(3,"%ld\t%c\t%ld\n",tmp->pid,'J',jiffies); } } void interruptible_sleep_on(struct task_struct **p) { struct task_struct *tmp; if (!p) return; if (current == &(init_task.task)) panic("task[0] trying to sleep"); tmp=*p; *p=current; repeat: current->state = TASK_INTERRUPTIBLE; /*检查并输出等待的Log*/ if (current->pid != 0) fprintk(3,"%ld\t%c\t%ld\n",current->pid,'W',jiffies); schedule(); if (*p && *p != current) { (**p).state=TASK_RUNNING; /*输出就绪的Log*/ fprintk(3,"%ld\t%c\t%ld\n",(**p).pid,'J',jiffies); goto repeat; } *p=tmp; if (tmp) { tmp->state=TASK_RUNNING; /*输出就绪的Log*/ fprintk(3,"%ld\t%c\t%ld\n",tmp->pid,'J',jiffies); } } void wake_up(struct task_struct **p) { if (p && *p) { if((**p).state != TASK_RUNNING){ /*输出就绪的Log*/ fprintk(3,"%ld\t%c\t%ld\n",(**p).pid,'J',jiffies); (**p).state=TASK_RUNNING; } } } ... ~~~ 附report 1.结合自己的体会,谈谈从程序设计者的角度看,单进程编程和多进程编程最大的区别是什么? 单进程编程较于多进程编程要更简单,因为单进程是顺序执行的,而多进程编程是同步执行的,所以情况要复杂得多。在设计多进程编程时,要考虑资源的分配,时间片的分配等达到系统调度的平衡。要综合考虑所有进程的情况以达到最优的并行执行效果。且多进程编程的功能更为强大,且应用范围较于单进程编程更加广泛。 2.你是如何修改时间片的? 仅针对样本程序建立的进程,在修改时间片前后,log文件的统计结果(不包括Graphic)都是什么样? 结合你的修改分析一下为什么会这样变化,或者为什么没变化? 1)include/sched.h宏INIT_TASK中定义的: ~~~ #define INIT_TASK \ { 0,15,15, //分别对应state;counter;和priority; ~~~ 将priority值修改,即可实现对时间片大小的调整。 2)在修改时间片将priority由15改为150后: Process 9~20 中Turnaround, Waiting, CPU Burst, I/O Burst变化不大 3)原因可能是程序中I/O操作占用的时间对于总时间影响的权重过大,导致处理时间体现的并不明显。 或者变化不大的原因是,子进程连续占用cpu的时间要比时间片大很多。