企业🤖AI智能体构建引擎,智能编排和调试,一键部署,支持私有化部署方案 广告
scrapy有一个简单的入门文档,大家可以参考一下,我感觉官方文档是最靠谱的,也是最真实的。 首先我们先创建一个scrapy的项目 ~~~ scrapy startproject weather ~~~ 我采用的是ubuntu12.04的系统,建立项目之后主文件夹就会出现一个weather的文件夹。我们可以通过tree来查看文件夹的结构。可以使用sudoapt-get install tree安装。 ~~~ tree weather ~~~ ~~~ weather ├── scrapy.cfg ├── wea.json ├── weather │   ├── __init__.py │   ├── __init__.pyc │   ├── items.py │   ├── items.pyc │   ├── pipelines.py │   ├── pipelines.py~ │   ├── pipelines.pyc │   ├── settings.py │   ├── settings.pyc │   └── spiders │   ├── __init__.py │   ├── __init__.pyc │   ├── weather_spider1.py │   ├── weather_spider1.pyc │   ├── weather_spider2.py │   ├── weather_spider2.py~ │   ├── weather_spider2.pyc │   └── weather_spider.pyc ├── weather.json └── wea.txt ~~~ 上面就是我编写过之后的爬虫文件,现在我们新创建一个weathertest来看一下初始的时候文件是什么样的。 ~~~ weathertest ├── scrapy.cfg └── weathertest ├── __init__.py ├── items.py ├── pipelines.py ├── settings.py └── spiders └── __init__.py ~~~ ~~~ scrapy.cfg:项目的配置文件 weather/:该项目的python模块。之后您将在此加入代码。 weather/items.py:相当于要提取的元素,相当于一个容器 weather/pipelines.py:存文件时或者发送到其他地方可用其编写 weather/settings.py:项目的设置文件. weather/spiders/:放置spider代码的目录. ~~~ Item是保存爬取到的数据的容器;其使用方法和python字典类似,并且提供了额外保护机制来避免拼写错误导致的未定义字段错误。 ~~~ # -*- coding: utf-8 -*- # Define here the models for your scraped items # # See documentation in: # http://doc.scrapy.org/en/latest/topics/items.html import scrapy class WeatherItem(scrapy.Item): # define the fields for your item here like: # name = scrapy.Field() city = scrapy.Field() date = scrapy.Field() dayDesc = scrapy.Field() dayTemp = scrapy.Field() pass ~~~ 之后我们编写今天的爬虫一号,使用xpath分解html中的标签,为了创建一个Spider,您必须继承scrapy.Spider类, 且定义以下三个属性: 1.name:用于区别Spider。该名字必须是唯一的,您不可以为不同的Spider设定相同的名字。 2.start_urls:包含了Spider在启动时进行爬取的url列表。因此,第一个被获取到的页面将是其中之一。后续的URL则从初始的URL获取到的数据中提取。 3.parse()是spider的一个方法。被调用时,每个初始URL完成下载后生成的Response对象将会作为唯一的参数传递给该函数。该方法负责解析返回的数据(responsedata),提取数据(生成item)以及生成需要进一步处理的URL的Request对象。 ~~~ import scrapy from weather.items import WeatherItem class WeatherSpider(scrapy.Spider): name = 'weather_spider1' allowed_domains = ['sina.com.cn'] start_urls = ['http://weather.sina.com.cn/beijing'] def parse(self,response): item = WeatherItem() item['city'] = response.xpath("//*[@id='slider_ct_name']/text()").extract() tenDay = response.xpath('//*[@id="blk_fc_c0_scroll"]'); item['date'] = tenDay.css('p.wt_fc_c0_i_date::text').extract() item['dayDesc'] = tenDay.css('img.icons0_wt::attr(title)').extract() item['dayTemp'] = tenDay.css('p.wt_fc_c0_i_temp::text').extract() return item ~~~ Scrapy使用了一种基于XPath和CSS表达式机制:Scrapy Selectors。 这里给出XPath表达式的例子及对应的含义: /html/head/title:选择HTML文档中<head>标签内的<title>元素 /html/head/title/text():选择上面提到的<title>元素的文字 //td:选择所有的<td>元素 //div[@class="mine"]:选择所有具有class="mine"属性的div元素 上边仅仅是几个简单的XPath例子,XPath实际上要比这远远强大的多。 为了配合XPath,Scrapy除了提供了Selector之外,还提供了方法来避免每次从response中提取数据时生成selector的麻烦。 Selector有四个基本的方法(点击相应的方法可以看到详细的API文档): xpath():传入xpath表达式,返回该表达式所对应的所有节点的selectorlist列表 。 css():传入CSS表达式,返回该表达式所对应的所有节点的selectorlist列表. extract():序列化该节点为unicode字符串并返回list。 re():根据传入的正则表达式对数据进行提取,返回unicode字符串list列表。 然后我们就可以编写pipelines.py文件了,如果你只是想保存文件,也可以不编写这个文件,就保持原样即可,运行爬虫的时候再后面加上 -o weather.json ~~~ scrapy crawl weather_spider1 -o weather.json ~~~ ~~~ # -*- coding: utf-8 -*- # Define your item pipelines here # # Don't forget to add your pipeline to the ITEM_PIPELINES setting # See: http://doc.scrapy.org/en/latest/topics/item-pipeline.html class WeatherPipeline(object): def __init__(self): self.file = open('wea.txt','w+') def process_item(self, item, spider): city = item['city'][0].encode('utf-8') self.file.write('city:'+str(city)+'\n\n') date = item['date'] desc = item['dayDesc'] dayDesc = desc[1::2] nightDesc = desc[0::2] dayTemp = item['dayTemp'] weaitem = zip(date,dayDesc,nightDesc,dayTemp) for i in range(len(weaitem)): item = weaitem[i] d = item[0] dd = item[1] nd = item[2] ta = item[3].split('/') dt = ta[0] nt = ta[1] txt = 'date: {0} \t\t day:{1}({2}) \t\t night:{3}({4}) \n\n'.format( d, dd.encode('utf-8'), dt.encode('utf-8'), nd.encode('utf-8'), nt.encode('utf-8') ) self.file.write(txt) return item ~~~ 最后设置一下settings.py文件就OK了。settings.py文件可以设置一下爬虫抓取网站时的身份或者代理。 ~~~ # -*- coding: utf-8 -*- # Scrapy settings for weather project # # For simplicity, this file contains only the most important settings by # default. All the other settings are documented here: # # http://doc.scrapy.org/en/latest/topics/settings.html # BOT_NAME = 'weather' SPIDER_MODULES = ['weather.spiders'] NEWSPIDER_MODULE = 'weather.spiders' # Crawl responsibly by identifying yourself (and your website) on the user-agent #USER_AGENT = 'weather (+http://www.yourdomain.com)' USER_AGENT = 'User-Agent: Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/39.0.2171.95 Safari/537.36' DEFAULT_REQUEST_HEADERS = { 'Referer': 'http://www.weibo.com' } ITEM_PIPELINES = { 'weather.pipelines.WeatherPipeline': 1 } DOWNLOAD_DELAY = 0.5 ~~~ 爬虫抓取网页也可以使用BeautifulSoup来抓取,来看一下我们今天的爬虫2号,哇咔咔。 ~~~ # -*- coding: utf-8 -*- import scrapy from bs4 import BeautifulSoup from weather.items import WeatherItem class WeatherSpider(scrapy.Spider): name = "weather_spider2" allowed_domains = ["sina.com.cn"] start_urls = ['http://weather.sina.com.cn'] def parse(self, response): html_doc = response.body #html_doc = html_doc.decode('utf-8') soup = BeautifulSoup(html_doc) itemTemp = {} itemTemp['city'] = soup.find(id='slider_ct_name') tenDay = soup.find(id='blk_fc_c0_scroll') itemTemp['date'] = tenDay.findAll("p", {"class": 'wt_fc_c0_i_date'}) itemTemp['dayDesc'] = tenDay.findAll("img", {"class": 'icons0_wt'}) itemTemp['dayTemp'] = tenDay.findAll('p', {"class": 'wt_fc_c0_i_temp'}) item = WeatherItem() for att in itemTemp: item[att] = [] if att == 'city': item[att] = itemTemp.get(att).text continue for obj in itemTemp.get(att): if att == 'dayDesc': item[att].append(obj['title']) else: item[att].append(obj.text) return item ~~~ 最后进入到weather文件夹内,开始运行scrapy。 可以先查看一下scrapy的命令有那些,在主文件夹内查看和在项目文件中查看是两个效果。 ~~~ Scrapy 0.24.6 - project: weather Usage: scrapy <command> [options] [args] Available commands: bench Run quick benchmark test check Check spider contracts crawl Run a spider deploy Deploy project in Scrapyd target edit Edit spider fetch Fetch a URL using the Scrapy downloader genspider Generate new spider using pre-defined templates list List available spiders parse Parse URL (using its spider) and print the results runspider Run a self-contained spider (without creating a project) settings Get settings values shell Interactive scraping console startproject Create new project version Print Scrapy version view Open URL in browser, as seen by Scrapy Use "scrapy <command> -h" to see more info about a command ~~~ 我们可以使用scrapy crawl weather_spider1或者scrapy crawl weather_spider2.然后在主文件夹内生成一个wea.txt的文件打开之后就是今天的天气。 ~~~ city:北京 date: 05-11 day:多云(20°C ) night:多云( 11°C) date: 05-12 day:晴(27°C ) night:晴( 11°C) date: 05-13 day:多云(29°C ) night:晴( 17°C) date: 05-14 day:多云(29°C ) night:多云( 19°C) date: 05-15 day:晴(26°C ) night:晴( 12°C) date: 05-16 day:晴(27°C ) night:晴( 16°C) date: 05-17 day:阴(29°C ) night:晴( 19°C) date: 05-18 day:晴(29°C ) night:少云( 16°C) date: 05-19 day:局部多云(31°C ) night:少云( 16°C) date: 05-20 day:局部多云(29°C ) night:局部多云( 16°C) ~~~