💎一站式轻松地调用各大LLM模型接口,支持GPT4、智谱、星火、月之暗面及文生图 广告
![](https://cdn.zimug.com/wx-zimug.png) Stream API为我们提供了`Stream.reduce`用来实现集合元素的归约。reduce函数有三个参数: * *Identity标识*:一个元素,它是归约操作的初始值,如果流为空,则为默认结果。 * *Accumulator累加器*:具有两个参数的函数:归约运算的部分结果和流的下一个元素。 * *Combiner合并器(可选)*:当归约并行化时,或当累加器参数的类型与累加器实现的类型不匹配时,用于合并归约操作的部分结果的函数。 ![](https://img.kancloud.cn/bd/76/bd76776778618850781059c2ea5a5c8b_889x538.png) 注意观察上面的图,我们先来理解累加器: * 阶段累加结果作为累加器的第一个参数 * 集合遍历元素作为累加器的第二个参数 ## Integer类型归约 reduce初始值为0,累加器可以是lambda表达式,也可以是方法引用。 ~~~ List<Integer> numbers = Arrays.asList(1, 2, 3, 4, 5, 6); int result = numbers .stream() .reduce(0, (subtotal, element) -> subtotal + element); System.out.println(result); //21 int result = numbers .stream() .reduce(0, Integer::sum); System.out.println(result); //21 ~~~ ## String类型归约 不仅可以归约Integer类型,只要累加器参数类型能够匹配,可以对任何类型的集合进行归约计算。 ~~~ List<String> letters = Arrays.asList("a", "b", "c", "d", "e"); String result = letters .stream() .reduce("", (partialString, element) -> partialString + element); System.out.println(result); //abcde String result = letters .stream() .reduce("", String::concat); System.out.println(result); //ancde ~~~ ## 复杂对象归约 计算所有的员工的年龄总和。 ~~~ Employee e1 = new Employee(1,23,"M","Rick","Beethovan"); Employee e2 = new Employee(2,13,"F","Martina","Hengis"); Employee e3 = new Employee(3,43,"M","Ricky","Martin"); Employee e4 = new Employee(4,26,"M","Jon","Lowman"); Employee e5 = new Employee(5,19,"F","Cristine","Maria"); Employee e6 = new Employee(6,15,"M","David","Feezor"); Employee e7 = new Employee(7,68,"F","Melissa","Roy"); Employee e8 = new Employee(8,79,"M","Alex","Gussin"); Employee e9 = new Employee(9,15,"F","Neetu","Singh"); Employee e10 = new Employee(10,45,"M","Naveen","Jain"); List<Employee> employees = Arrays.asList(e1, e2, e3, e4, e5, e6, e7, e8, e9, e10); Integer total = employees.stream().map(Employee::getAge).reduce(0,Integer::sum); System.out.println(total); //346 ~~~ * 先用map将Stream流中的元素由Employee类型处理为Integer类型(age)。 * 然后对Stream流中的Integer类型进行归约 ## Combiner合并器的使用 除了使用map函数实现类型转换后的集合归约,我们还可以用Combiner合并器来实现,这里第一次使用到了Combiner合并器。 因为Stream流中的元素是Employee,累加器的返回值是Integer,所以二者的类型不匹配。这种情况下可以使用Combiner合并器对累加器的结果进行二次归约,相当于做了类型转换。 ~~~ Integer total3 = employees.stream() .reduce(0,(totalAge,emp) -> totalAge + emp.getAge(),Integer::sum); //注意这里reduce方法有三个参数 System.out.println(total); //346 ~~~ 计算结果和使用map进行数据类型转换的方式是一样的。 ## 并行流数据归约(使用合并器) 对于大数据量的集合元素归约计算,更能体现出Stream并行流计算的威力。 ![](https://img.kancloud.cn/77/5d/775d65715a631fe8d39a2861c0a3c94c_1017x563.png) 在进行并行流计算的时候,可能会将集合元素分成多个组计算。为了更快的将分组计算结果累加,可以使用合并器。 ~~~ Integer total2 = employees .parallelStream() .map(Employee::getAge) .reduce(0,Integer::sum,Integer::sum); //注意这里reduce方法有三个参数 System.out.println(total); //346 ~~~