ThinkChat2.0新版上线,更智能更精彩,支持会话、画图、阅读、搜索等,送10W Token,即刻开启你的AI之旅 广告
通过InputFormat决定读取的数据的类型,然后拆分成一个个InputSplit,每个InputSplit对应一个Map处理,RecordReader读取InputSplit的内容给Map ## InputFormat 决定读取数据的格式,可以是文件或数据库等 ### 功能 1. 验证作业输入的正确性,如格式等 1. 将输入文件切割成逻辑分片(InputSplit),一个InputSplit将会被分配给一个独立的Map任务 1. 提供RecordReader实现,读取InputSplit中的"K-V对"供Mapper使用 ### 方法 **List getSplits():** 获取由输入文件计算出输入分片(InputSplit),解决数据或文件分割成片问题 **RecordReader <k,v>createRecordReader():</k,v>** 创建#x5EFA;RecordReader,从InputSplit中读取数据,解决读取分片中数据问题 ### 类结构 ![](https://box.kancloud.cn/2015-07-23_55b03fb6552eb.png) **TextInputFormat:** 输入文件中的每一行就是一个记录,Key是这一行的byte offset,而value是这一行的内容 **KeyValueTextInputFormat:** 输入文件中每一行就是一个记录,第一个分隔符字符切分每行。在分隔符字符之前的内容为Key,在之后的为Value。分隔符变量通过key.value.separator.in.input.line变量设置,默认为(\t)字符。 **NLineInputFormat:** 与TextInputFormat一样,但每个数据块必须保证有且只有N行,mapred.line.input.format.linespermap属性,默认为1 **SequenceFileInputFormat:** 一个用来读取字符流数据的InputFormat,<key,value>为用户自定义的。字符流数据是Hadoop自定义的压缩的二进制数据格式。它用来优化从一个MapReduce任务的输出到另一个MapReduce任务的输入之间的数据传输过程。</key,value> ## InputSplit 代表一个个逻辑分片,并没有真正存储数据,只是提供了一个如何将数据分片的方法 Split内有Location信息,利于数据局部化 一个InputSplit给一个单独的Map处理 ~~~ public abstract class InputSplit { /** * 获取Split的大小,支持根据size对InputSplit排序. */ public abstract long getLength() throws IOException, InterruptedException; /** * 获取存储该分片的数据所在的节点位置. */ public abstract String[] getLocations() throws IOException, InterruptedException; } ~~~ ## RecordReader 将InputSplit拆分成一个个<key,value>对给Map处理,也是实际的文件读取分隔对象</key,value> ## 问题 ### 大量小文件如何处理 CombineFileInputFormat可以将若干个Split打包成一个,目的是避免过多的Map任务(因为Split的数目决定了Map的数目,大量的Mapper Task创建销毁开销将是巨大的) ### 怎么计算split的 通常一个split就是一个block(FileInputFormat仅仅拆分比block大的文件),这样做的好处是使得Map可以在存储有当前数据的节点上运行本地的任务,而不需要通过网络进行跨节点的任务调度 通过mapred.min.split.size, mapred.max.split.size, block.size来控制拆分的大小 如果mapred.min.split.size大于block size,则会将两个block合成到一个split,这样有部分block数据需要通过网络读取 如果mapred.max.split.size小于block size,则会将一个block拆成多个split,增加了Map任务数(Map对split进行计算ק#x5E76;且上报结果,关闭当前计算打开新的split均需要耗费资源) 先获取文件在HDFS上的路径和Block信息,然后根据splitSize对文件进行切分( splitSize = computeSplitSize(blockSize, minSize, maxSize) ),默认splitSize 就等于blockSize的默认值(64m) ~~~ public List<InputSplit> getSplits(JobContext job) throws IOException { // 首先计算分片的最大和最小值。这两个值将会用来计算分片的大小 long minSize = Math.max(getFormatMinSplitSize(), getMinSplitSize(job)); long maxSize = getMaxSplitSize(job); // generate splits List<InputSplit> splits = new ArrayList<InputSplit>(); List<FileStatus> files = listStatus(job); for (FileStatus file: files) { Path path = file.getPath(); long length = file.getLen(); if (length != 0) { FileSystem fs = path.getFileSystem(job.getConfiguration()); // 获取该文件所有的block信息列表[hostname, offset, length] BlockLocation[] blkLocations = fs.getFileBlockLocations(file, 0, length); // 判断文件是否可分割,通常是可分割的,但如果文件是压缩的,将不可分割 if (isSplitable(job, path)) { long blockSize = file.getBlockSize(); // 计算分片大小 // 即 Math.max(minSize, Math.min(maxSize, blockSize)); long splitSize = computeSplitSize(blockSize, minSize, maxSize); long bytesRemaining = length; // 循环分片。 // 当剩余数据与分片大小比值大于Split_Slop时,继续分片, 小于等于时,停止分片 while (((double) bytesRemaining)/splitSize > SPLIT_SLOP) { int blkIndex = getBlockIndex(blkLocations, length-bytesRemaining); splits.add(makeSplit(path, length-bytesRemaining, splitSize, blkLocations[blkIndex].getHosts())); bytesRemaining -= splitSize; } // 处理余下的数据 if (bytesRemaining != 0) { splits.add(makeSplit(path, length-bytesRemaining, bytesRemaining, blkLocations[blkLocations.length-1].getHosts())); } } else { // 不可split,整块返回 splits.add(makeSplit(path, 0, length, blkLocations[0].getHosts())); } } else { // 对于长度为0的文件,创建空Hosts列表,返回 splits.add(makeSplit(path, 0, length, new String[0])); } } // 设置输入文件数量 job.getConfiguration().setLong(NUM_INPUT_FILES, files.size()); LOG.debug("Total # of splits: " + splits.size()); return splits; } ~~~ ### 分片间的数据如何处理 split是根据文件大小分割的,而一般处理是根据分隔符进行分割的,这样势必存在一条记录横跨两个split ![](https://box.kancloud.cn/2015-07-23_55b03fb66abcf.png) 解决办法是只要不是第一个split,都会远程读取一条记录。不是第一个split的都忽略到第一条记录 ~~~ public class LineRecordReader extends RecordReader<LongWritable, Text> { private CompressionCodecFactory compressionCodecs = null; private long start; private long pos; private long end; private LineReader in; private int maxLineLength; private LongWritable key = null; private Text value = null; // initialize函数即对LineRecordReader的一个初始化 // 主要是计算分片的始末位置,打开输入流以供读取K-V对,处理分片经过压缩的情况等 public void initialize(InputSplit genericSplit, TaskAttemptContext context) throws IOException { FileSplit split = (FileSplit) genericSplit; Configuration job = context.getConfiguration(); this.maxLineLength = job.getInt("mapred.linerecordreader.maxlength", Integer.MAX_VALUE); start = split.getStart(); end = start + split.getLength(); final Path file = split.getPath(); compressionCodecs = new CompressionCodecFactory(job); final CompressionCodec codec = compressionCodecs.getCodec(file); // 打开文件,并定位到分片读取的起始位置 FileSystem fs = file.getFileSystem(job); FSDataInputStream fileIn = fs.open(split.getPath()); boolean skipFirstLine = false; if (codec != null) { // 文件是压缩文件的话,直接打开文件 in = new LineReader(codec.createInputStream(fileIn), job); end = Long.MAX_VALUE; } else { // 只要不是第一个split,则忽略本split的第一行数据 if (start != 0) { skipFirstLine = true; --start; // 定位到偏移位置,下&#x#x6B21;读取就会从偏移位置开始 fileIn.seek(start); } in = new LineReader(fileIn, job); } if (skipFirstLine) { // 忽略第一行数据,重新定位start start += in.readLine(new Text(), 0, (int) Math.min((long) Integer.MAX_VALUE, end - start)); } this.pos = start; } public boolean nextKeyValue() throws IOException { if (key == null) { key = new LongWritable(); } key.set(pos);// key即为偏移量 if (value == null) { value = new Text(); } int newSize = 0; while (pos < end) { newSize = in.readLine(value, maxLineLength, Math.max((int) Math.min(Integer.MAX_VALUE, end - pos), maxLineLength)); // 读取的数据长度为0,则说明已读完 if (newSize == 0) { break; } pos += newSize; // 读取的数据长度小于最大行长度,也说明已读取完毕 if (newSize < maxLineLength) { break; } // 执行到此处,说明该行数据没读完,继续读入 } if (newSize == 0) { key = null; value = null; return false; } else { return true; } } } ~~~