# 激活函数(activation)
> 激活函数是用来加入非线性因素的,提高神经网络对模型的表达能力,解决线性模型所不能解决的问题。
## 效果对比
其他条件相同,只改变激活函数情况下
> relu准确率为:0.9554
> tanh准确率为:0.9411
> sigmoid准确率为:0.9105
- 序言
- 安装
- 快速体验
- 配置
- 层(layer)
- 展平(flatten)
- 全连接(fully connected)
- 卷积(convolutional)
- 池化(pooling)
- 标准化(batch normalization)
- 失活(dropout)
- 循环(RNN)
- 长短期记忆(LSTM)
- 激活函数(activation)
- relu
- sigmoid
- tanh
- 损失(loss)
- 交叉熵损失(softmax)
- 折页损失(SVM或Hinge)
- 优化器(optimizer)
- 带动量学习率自适应(adam)
- 动量(momentum)
- 学习率自适应(rmsprop)
- 随机梯度下降(sgd)
- 模型(model)
- 保存(save)
- 载入(reload)
- 继续训练(continue train)
- 数据集(datasets)
- 手写数字(mnist)
- 时尚物品(Fashion-MNIST)
- 10种物体分类(cifar10)
- 100种物体分类(cifar100)
- 电影评论情感分类(imdb)
- 路透社新闻主题分类(reuters)
- 可视化(visualization)
- 损失曲线(loss)
- 准确率曲线(accuracy)