🔥码云GVP开源项目 12k star Uniapp+ElementUI 功能强大 支持多语言、二开方便! 广告
## 问题 你需要对浮点数执行精确的计算操作,并且不希望有任何小误差的出现。 ## 解决方案 浮点数的一个普遍问题是它们并不能精确的表示十进制数。 并且,即使是最简单的数学运算也会产生小的误差,比如: ~~~ python >>> a = 4.2 >>> b = 2.1 >>> a + b 6.300000000000001 >>> (a + b) == 6.3 False >>> ~~~ 这些错误是由底层CPU和IEEE 754标准通过自己的浮点单位去执行算术时的特征。 由于Python的浮点数据类型使用底层表示存储数据,因此你没办法去避免这样的误差。 如果你想更加精确(并能容忍一定的性能损耗),你可以使用 `decimal` 模块: ~~~ python >>> from decimal import Decimal >>> a = Decimal('4.2') >>> b = Decimal('2.1') >>> a + b Decimal('6.3') >>> print(a + b) 6.3 >>> (a + b) == Decimal('6.3') True ~~~ 初看起来,上面的代码好像有点奇怪,比如我们用字符串来表示数字。 然而, `Decimal` 对象会像普通浮点数一样的工作(支持所有的常用数学运算)。 如果你打印它们或者在字符串格式化函数中使用它们,看起来跟普通数字没什么两样。 decimal 模块的一个主要特征是允许你控制计算的每一方面,包括数字位数和四舍五入运算。 为了这样做,你先得创建一个本地上下文并更改它的设置,比如: ~~~ python >>> from decimal import localcontext >>> a = Decimal('1.3') >>> b = Decimal('1.7') >>> print(a / b) 0.7647058823529411764705882353 >>> with localcontext() as ctx: ... ctx.prec = 3 ... print(a / b) ... 0.765 >>> with localcontext() as ctx: ... ctx.prec = 50 ... print(a / b) ... 0.76470588235294117647058823529411764705882352941176 >>> ~~~ ## 讨论 `decimal` 模块实现了IBM的”通用小数运算规范”。不用说,有很多的配置选项这本书没有提到。 Python新手会倾向于使用 decimal 模块来处理浮点数的精确运算。 然而,先理解你的应用程序目的是非常重要的。 如果你是在做科学计算或工程领域的计算、电脑绘图,或者是科学领域的大多数运算, 那么使用普通的浮点类型是比较普遍的做法。 其中一个原因是,在真实世界中很少会要求精确到普通浮点数能提供的17位精度。 因此,计算过程中的那么一点点的误差是被允许的。 第二点就是,原生的浮点数计算要快的多-有时候你在执行大量运算的时候速度也是非常重要的。 即便如此,你却不能完全忽略误差。数学家花了大量时间去研究各类算法,有些处理误差会比其他方法更好。 你也得注意下减法删除以及大数和小数的加分运算所带来的影响。比如: ~~~ python >>> nums = [1.23e+18, 1, -1.23e+18] >>> sum(nums) # Notice how 1 disappears 0.0 >>> 上面的错误可以利用 math.fsum() 所提供的更精确计算能力来解决: >>> import math >>> math.fsum(nums) 1.0 >>> ~~~ 然而,对于其他的算法,你应该仔细研究它并理解它的误差产生来源。 总的来说, `decimal` 模块主要用在涉及到金融的领域。 在这类程序中,哪怕是一点小小的误差在计算过程中蔓延都是不允许的。 因此, `decimal` 模块为解决这类问题提供了方法。 当Python和数据库打交道的时候也通常会遇到 `Decimal` 对象,并且,通常也是在处理金融数据的时候。